Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization

Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree architecture is presented to address those problems for we...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 10465 - 10474
Main Authors Ji, Ruyi, Wen, Longyin, Zhang, Libo, Du, Dawei, Wu, Yanjun, Zhao, Chen, Liu, Xianglong, Huang, Feiyue
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree architecture is presented to address those problems for weakly supervised FGVC. Specifically, we incorporate convolutional operations along edges of the tree structure, and use the routing functions in each node to determine the root-to-leaf computational paths within the tree. The final decision is computed as the summation of the predictions from leaf nodes. The deep convolutional operations learn to capture the representations of objects, and the tree structure characterizes the coarse-to-fine hierarchical feature learning process. In addition, we use the attention transformer module to enforce the network to capture discriminative features. The negative log-likelihood loss is used to train the entire network in an end-to-end fashion by SGD with back-propagation. Several experiments on the CUB-200-2011, Stanford Cars and Aircraft datasets demonstrate that the proposed method performs favorably against the state-of-the-arts.
AbstractList Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree architecture is presented to address those problems for weakly supervised FGVC. Specifically, we incorporate convolutional operations along edges of the tree structure, and use the routing functions in each node to determine the root-to-leaf computational paths within the tree. The final decision is computed as the summation of the predictions from leaf nodes. The deep convolutional operations learn to capture the representations of objects, and the tree structure characterizes the coarse-to-fine hierarchical feature learning process. In addition, we use the attention transformer module to enforce the network to capture discriminative features. The negative log-likelihood loss is used to train the entire network in an end-to-end fashion by SGD with back-propagation. Several experiments on the CUB-200-2011, Stanford Cars and Aircraft datasets demonstrate that the proposed method performs favorably against the state-of-the-arts.
Author Zhang, Libo
Ji, Ruyi
Zhao, Chen
Huang, Feiyue
Du, Dawei
Wen, Longyin
Liu, Xianglong
Wu, Yanjun
Author_xml – sequence: 1
  givenname: Ruyi
  surname: Ji
  fullname: Ji, Ruyi
  organization: State Key Laboratory of Computer Science, ISCAS, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Longyin
  surname: Wen
  fullname: Wen, Longyin
  organization: JD Finance America Corporation, USA
– sequence: 3
  givenname: Libo
  surname: Zhang
  fullname: Zhang, Libo
  organization: State Key Laboratory of Computer Science, ISCAS, Beijing, China
– sequence: 4
  givenname: Dawei
  surname: Du
  fullname: Du, Dawei
  organization: University at Albany, State University of New York, USA
– sequence: 5
  givenname: Yanjun
  surname: Wu
  fullname: Wu, Yanjun
  organization: State Key Laboratory of Computer Science, ISCAS, Beijing, China
– sequence: 6
  givenname: Chen
  surname: Zhao
  fullname: Zhao, Chen
  organization: State Key Laboratory of Computer Science, ISCAS, Beijing, China
– sequence: 7
  givenname: Xianglong
  surname: Liu
  fullname: Liu, Xianglong
  organization: Beihang University, Beijing, China
– sequence: 8
  givenname: Feiyue
  surname: Huang
  fullname: Huang, Feiyue
  organization: Tencent Youtu Lab, Beijing, China
BookMark eNotT8tOwzAQNAgkSskXwCE_kOBdP2IfS0QLUsVLpdfKaTbIqDjISZHg63EFh9HsaDSrmXN2EvpAjF0BLwG4va7XTy8SNeclcuQlBy7NEctsZaDCBNBGHbMJcC0KbcGesWwY3jnnAgG0NRP2PBtHCqPvQ1734avf7Q-32-U3Prj4nT_QPia1ikR518d87gMVi-gStfnaD_tk1m6ktz76H3fIXrDTzu0Gyv55yl7nt6v6rlg-Lu7r2bLwqO1YWJToRJuadS2BFLIBtW0EkkZjuEKXsMVOWuGMapu0rAI6rGrQoAQlpuzy768nos1n9B-p78aCqpSw4hcQgVGH
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR42600.2020.01048
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728171685
1728171687
EISSN 1063-6919
EndPage 10474
ExternalDocumentID 9157539
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i269t-9242a3d063fde1434b15cb32e6288052a052c2f493a85db10471e1728b2824153
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-9242a3d063fde1434b15cb32e6288052a052c2f493a85db10471e1728b2824153
PageCount 10
ParticipantIDs ieee_primary_9157539
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.5074039
Snippet Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by...
SourceID ieee
SourceType Publisher
StartPage 10465
SubjectTerms Binary trees
Convolutional codes
Decision trees
Routing
Task analysis
Vegetation
Visualization
Title Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization
URI https://ieeexplore.ieee.org/document/9157539
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ0-oYPzOHjy6pbvbFvaoRCQmGDRAuJFuO02IBgy0Hvz1zm4rRuPBQ5N-pNtmp5t5bzpvBuAqiySi0RGPZdfwAIXgRvnIYyWCVKso0U4uNnqMhtPgYR7Oa3C908Igoks-Q8_uun_56TopbKisowWBC6XrUCfiVmq1dvEURUwm0r1KHSd83enPxs-u_jqxQOl7lnj0fvRQcS5k0ITR18PLzJEXr8iNl3z8qsv437fbh_a3WI-Nd27oAGq4OoRmhS5ZtXa3LXi6yfMyt5HRne_VJxe_slsnyWW2TAcdTTaIjJAsGxD-5Pe2gwQNM1tuC7rYt3Ul1ptKu9mG6eBu0h_yqqECX8pI55y4loxVSqgkS5GAUmBEmBgl0fYc9kMZ05bILNAq7oWpsVUcBNoGVoaIGXl6dQSN1XqFx8ASAippGvrGN0FAq55oVia6NFyUODucQMvO0OKtrJmxqCbn9O_TZ7BnbVSGNs6hkW8KvCBnn5tLZ-VP-COoHQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSECsZv9-DRhW63LexRiYgKBA0Qb6TbThOiAQOtB3-9s9uK0Xjw0KQf6bbZ6Wbem86bAbhIAhdRq4CHblNzD4XgWjrIQym8WMkgUlYu1h8E3bF3_-w_l-ByrYVBRJt8hnWza__lx4soM6GyhhIELqTagE3y-77I1VrriIokLhOoVqGPE45qtCfDJ1uBnXig69QN9Wj96KJinUinAv2vx-e5Iy_1LNX16ONXZcb_vt8O1L7lemy4dkS7UML5HlQKfMmK1buqwuNVmubZjYzufC8-uvCVXVtRLjOFOuhotERkhGVZhxAovzU9JGiYyWyV0cW2qSyxWBbqzRqMOzejdpcXLRX4zA1UyoltuaGMCZckMRJU8rTwIy1dNF2HHd8NaYvcxFMybPmxNnUcBJoWVpqoGfl6uQ_l-WKOB8Aigipx7Dva0Z5H656IViKaNFwQWTscQtXM0PQtr5oxLSbn6O_T57DVHfV7097d4OEYto298kDHCZTTZYan5PpTfWYt_gnwHqtm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Attention+Convolutional+Binary+Neural+Tree+for+Fine-Grained+Visual+Categorization&rft.au=Ji%2C+Ruyi&rft.au=Wen%2C+Longyin&rft.au=Zhang%2C+Libo&rft.au=Du%2C+Dawei&rft.date=2020-01-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=10465&rft.epage=10474&rft_id=info:doi/10.1109%2FCVPR42600.2020.01048&rft.externalDocID=9157539