FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding

Emerging interests have been brought to recognize previously unseen objects given very few training examples, known as few-shot object detection (FSOD). Recent researches demonstrate that good feature embedding is the key to reach favorable few-shot learning performance. We observe object proposals...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 7348 - 7358
Main Authors Sun, Bo, Li, Banghuai, Cai, Shengcai, Yuan, Ye, Zhang, Chi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emerging interests have been brought to recognize previously unseen objects given very few training examples, known as few-shot object detection (FSOD). Recent researches demonstrate that good feature embedding is the key to reach favorable few-shot learning performance. We observe object proposals with different Intersection-of-Union (IoU) scores are analogous to the intra-image augmentation used in contrastive visual representation learning. And we exploit this analogy and incorporate supervised contrastive learning to achieve more robust objects representations in FSOD. We present Few-Shot object detection via Contrastive proposals Encoding (FSCE), a simple yet effective approach to learning contrastive-aware object proposal encodings that facilitate the classification of detected objects. We notice the degradation of average precision (AP) for rare objects mainly comes from misclassifying novel instances as confusable classes. And we ease the misclassification issues by promoting instance level intraclass compactness and inter-class variance via our contrastive proposal encoding loss (CPE loss). Our design outperforms current state-of-the-art works in any shot and all data splits, with up to +8.8% on standard benchmark PASCAL VOC and +2.7% on challenging COCO benchmark. Code is available at: https://github.com/MegviiDetection/FSCE.
AbstractList Emerging interests have been brought to recognize previously unseen objects given very few training examples, known as few-shot object detection (FSOD). Recent researches demonstrate that good feature embedding is the key to reach favorable few-shot learning performance. We observe object proposals with different Intersection-of-Union (IoU) scores are analogous to the intra-image augmentation used in contrastive visual representation learning. And we exploit this analogy and incorporate supervised contrastive learning to achieve more robust objects representations in FSOD. We present Few-Shot object detection via Contrastive proposals Encoding (FSCE), a simple yet effective approach to learning contrastive-aware object proposal encodings that facilitate the classification of detected objects. We notice the degradation of average precision (AP) for rare objects mainly comes from misclassifying novel instances as confusable classes. And we ease the misclassification issues by promoting instance level intraclass compactness and inter-class variance via our contrastive proposal encoding loss (CPE loss). Our design outperforms current state-of-the-art works in any shot and all data splits, with up to +8.8% on standard benchmark PASCAL VOC and +2.7% on challenging COCO benchmark. Code is available at: https://github.com/MegviiDetection/FSCE.
Author Zhang, Chi
Sun, Bo
Yuan, Ye
Li, Banghuai
Cai, Shengcai
Author_xml – sequence: 1
  givenname: Bo
  surname: Sun
  fullname: Sun, Bo
  email: bos@usc.edu
  organization: University of Southern California
– sequence: 2
  givenname: Banghuai
  surname: Li
  fullname: Li, Banghuai
  email: libanghuai@megvii.com
  organization: MEGVII Technology
– sequence: 3
  givenname: Shengcai
  surname: Cai
  fullname: Cai, Shengcai
  email: caishengcai@megvii.com
  organization: MEGVII Technology
– sequence: 4
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  email: yuanye@megvii.com
  organization: MEGVII Technology
– sequence: 5
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  email: zhangchi@megvii.com
  organization: MEGVII Technology
BookMark eNotj8tKw0AUQEdRsK39Al3MDyTeeee6KzFRodBi1W1JJrc6pWZKEir-vQFdnd3hnCm7aGNLjN0KSIUAvMvf1y_aauVSCVKkAE66MzYV1hqtDaA8ZxMBViUWBV6xed_vAUBJISxmE7YoN3lxz0v6TjafceCrek9-4A80jAix5adQ8Ty2Q1f1QzgRX3fxGPvqwIvWxya0H9fsclcdepr_c8beyuI1f0qWq8fnfLFMgrQ4JChqWYtaOOW9loSejFSZRl8TGI-7Rnlpq2zsb0wDBjVZmaG31lND45masZs_byCi7bELX1X3s0XjHIJTv_7TS0o
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR46437.2021.00727
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665445092
9781665445092
EISSN 1063-6919
EndPage 7358
ExternalDocumentID 9577907
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i269t-91b2b1b173cc42e9ce523849cbe05c9fd3c26a8007d5d0594e6289c66cede0213
IEDL.DBID RIE
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-91b2b1b173cc42e9ce523849cbe05c9fd3c26a8007d5d0594e6289c66cede0213
PageCount 11
ParticipantIDs ieee_primary_9577907
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.630651
Snippet Emerging interests have been brought to recognize previously unseen objects given very few training examples, known as few-shot object detection (FSOD). Recent...
SourceID ieee
SourceType Publisher
StartPage 7348
SubjectTerms Benchmark testing
Encoding
Object detection
Pipelines
Power capacitors
Training
Visualization
Title FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
URI https://ieeexplore.ieee.org/document/9577907
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ0-oYPzOHjxaoN22dL0ZpCEmKBEx3Mh-DJFoWgJFE3-9O23FaDx42-xh28xmd-bNzHsLcMGN5mjjUEeKiDt-gNyJjFGO6XLrDoVGLYmNPLwLBxP_dhpMK3C55cIgYt58hi0a5rV8k-oNpcraIiB1vG4Vqha4FVytbT6FWyQTiqhkx7kd0e49jR58qktZFOi5uUb2zzdUchcS12H49fGic-SltclUS3_80mX879_tQvObrMdGWze0BxVM9qFeRpesPLvrBlzH417_isX47oyf04zdK0rBsBvM8m6shL0tJCOxqpVc0x1Iiy7TtXxl_USntHYTJnH_sTdwygcUnIUXisxeZMpTrnK7XGvfQ2t5CzsjX2iFnUCLueHaC6UNGbsmMCTcgqHFXzoMNRq0NuMHUEvSBA-BccUVRkqQPqF16oEFPopqou5ccu7J6AgaZJHZstDImJXGOP57-gR2aE-KVMYp1LLVBs-sc8_Ueb6rn-DEoxg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6DeNATKhi_7cGjA7ZuY_VmkAUVkAgYbqQfL5FoNgJDE3-97TYxGg_emh665W3a5_16ngJcUCUpaj_U4iyglushtQKlhKUaVMMhkyi5YSN3e3575N6NvXEBLtdcGERMm8-waoZpLV_FcmVSZTXmGXW8xgZsatz37Iyttc6oUB3L-CzI-XF2ndWaT_1H11SmdBzo2KlK9s9XVFIQCUvQ_fp81jvyUl0loio_fikz_vf_dqDyTdcj_TUQ7UIBoz0o5f4lyU_vsgzX4aDZuiIhvluD5zghD8IkYcgNJmk_VkTeZpwYuaoFX5pb0Cw6j5f8lbQiGZu1KzAKW8Nm28qfULBmjs8SfZUJR9jCblApXQe17XXgGbhMCqx7kk0VlY7PtdPYUJ4y0i3o6whM-r5EhdpmdB-KURzhARAqqMBAMKNQqGHd06GPMFVRe8opdXhwCGVjkck8U8mY5MY4-nv6HLbaw25n0rnt3R_DttmfLLFxAsVkscJTDfWJOEt3-BOXiaZh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=FSCE%3A+Few-Shot+Object+Detection+via+Contrastive+Proposal+Encoding&rft.au=Sun%2C+Bo&rft.au=Li%2C+Banghuai&rft.au=Cai%2C+Shengcai&rft.au=Yuan%2C+Ye&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7348&rft.epage=7358&rft_id=info:doi/10.1109%2FCVPR46437.2021.00727&rft.externalDocID=9577907