Computational Hyperspectral Imaging Based on Dimension-Discriminative Low-Rank Tensor Recovery
Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D signal as a 1D vector and treat the prior information within different dimensions in an indiscriminative manner, which ignores the high-dimensio...
Saved in:
Published in | Proceedings / IEEE International Conference on Computer Vision pp. 10182 - 10191 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D signal as a 1D vector and treat the prior information within different dimensions in an indiscriminative manner, which ignores the high-dimensionality nature of hyperspectral image (HSI) and thus results in poor quality reconstruction. In this paper, we propose to make full use of the high-dimensionality structure of the desired HSI to boost the reconstruction quality. We first build a high-order tensor by exploiting the nonlocal similarity in HSI. Then, we propose a dimension-discriminative low-rank tensor recovery (DLTR) model to characterize the structure prior adaptively in each dimension. By integrating the structure prior in DLTR with the system imaging process, we develop an optimization framework for HSI reconstruction, which is finally solved via the alternating minimization algorithm. Extensive experiments implemented with both synthetic and real data demonstrate that our method outperforms state-of-the-art methods. |
---|---|
AbstractList | Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D signal as a 1D vector and treat the prior information within different dimensions in an indiscriminative manner, which ignores the high-dimensionality nature of hyperspectral image (HSI) and thus results in poor quality reconstruction. In this paper, we propose to make full use of the high-dimensionality structure of the desired HSI to boost the reconstruction quality. We first build a high-order tensor by exploiting the nonlocal similarity in HSI. Then, we propose a dimension-discriminative low-rank tensor recovery (DLTR) model to characterize the structure prior adaptively in each dimension. By integrating the structure prior in DLTR with the system imaging process, we develop an optimization framework for HSI reconstruction, which is finally solved via the alternating minimization algorithm. Extensive experiments implemented with both synthetic and real data demonstrate that our method outperforms state-of-the-art methods. |
Author | Fu, Ying Zhang, Shipeng Wang, Lizhi Zhong, Xiaoming Huang, Hua |
Author_xml | – sequence: 1 givenname: Shipeng surname: Zhang fullname: Zhang, Shipeng organization: Xi'an Jiaotong University – sequence: 2 givenname: Lizhi surname: Wang fullname: Wang, Lizhi organization: Beijing Institute of Technology – sequence: 3 givenname: Ying surname: Fu fullname: Fu, Ying organization: Beijing Institute of Technology – sequence: 4 givenname: Xiaoming surname: Zhong fullname: Zhong, Xiaoming organization: Beijing Institute of Space Mechanics and Electricity – sequence: 5 givenname: Hua surname: Huang fullname: Huang, Hua organization: Beijing Institute of Technology |
BookMark | eNotjl9LwzAUxaMouM09--BLvkDnTdKuN4_aqSsMhDF8dKTp7YiuSWnqZN_egj4dDucPvym78sETY3cCFkKAfiiL4n0hQegFCJB4weY6R5FLFCmCwks2kQohyTNIb9g0xk8ApSUuJ-yjCG33PZjBBW-OfH3uqI8d2aEfXdmag_MH_mQi1Tx4vnIt-ThWk5WLtnet8-PyRHwTfpKt8V98N-ah51uy4UT9-ZZdN-YYaf6vM7Z7ed4V62Tz9loWj5vEyaUeEiSr8lw3tExVVaM0WZVloha1ykZ-YyVWiLVsQDS2kSKtrKlSbUiqqpF1pmbs_u_WEdG-G8FMf95rAETI1C9oy1a2 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV.2019.01028 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781728148038 1728148030 |
EISSN | 2380-7504 |
EndPage | 10191 |
ExternalDocumentID | 9008805 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i269t-8ec3779fe643bd82a5b551d1d35803ac28b88d2f01fcf214bcab49ae23bf2d53 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:38:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i269t-8ec3779fe643bd82a5b551d1d35803ac28b88d2f01fcf214bcab49ae23bf2d53 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9008805 |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.4101865 |
Snippet | Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 10182 |
Title | Computational Hyperspectral Imaging Based on Dimension-Discriminative Low-Rank Tensor Recovery |
URI | https://ieeexplore.ieee.org/document/9008805 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXh002Q3j83V1tKKFZEqPVn2CaWYlJoi-uudTdKK4sFL2CSELDvsfDOzM98gdMkMeB3CpiSEAVxESCRLFKHSGMVUIvwyoD--j4dP4e00mjbQ1bYWxhhTJp8Zzw3Ls3ydq7ULlXVTACzuCEt3wHGrarU2Whdgnsc1dU_gp91Rr_fsErdSz5Gm8R-9U0roGLTQePPTKmNk4a0L6anPX3yM_53VHup8F-nhhy387KOGyQ5Qq7Yqcb1n39ropWrcUAf98BAcz6q-cgV3o9eySxG-BjDTOM9w37H9uwga6c-dRnGZMk4j4rv8nTyKbIEn8D5fYee3wjb46KDJ4GbSG5K6qwKZ0zgtCAcZJElqDdgiUnMqIglWkw60OxBlQlEuOdfU-oFVlgahVEKGqTCUSUt1xA5RM8szc4Swb-AjbaRm1oZUJVxEloU6ps5sU5F_jNputWbLijdjVi_Uyd-PT9Guk1eVKHeGmsVqbc4B8At5UUr6C4T5rnY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5KPeipaiu-3YNHN01289hcbS2ptkUkSk-WfUIpJlJTRH-9u0laUTx4CZuEkGWGnW92duYbAC6JMrsOpmPkm4G5MB9xEgmEuVKCiIi5ZUB_PAmTR_92Gkwb4GpTC6OUKpPPlGOH5Vm-zMXKhsq6sQEsaglLtwzuB15VrbW2uwboaViT93hu3B32ek82dSt2LG0a_dE9pQSPQQuM17-tckYWzqrgjvj8xcj433ntgs53mR683wDQHmiobB-0ar8S1qv2rQ2eq9YNddgPJmbrWVVYLs3d8KXsUwSvDZxJmGewb_n-bQwN9efWpthcGWsT4Sh_Rw8sW8DUvM-X0O5czUL46IB0cJP2ElT3VUBzHMYFokYLURRrZbwRLilmATfSlJ60R6KECUw5pRJr19NCY8_ngnE_ZgoTrrEMyAFoZnmmDgF0lflIKi6J1j4WEWWBJr4MsXXcROAegbaV1uy1Ys6Y1YI6_vvxBdhO0vFoNhpO7k7AjtVdlTZ3CprFcqXODPwX_LzU-hfK1LG_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Computational+Hyperspectral+Imaging+Based+on+Dimension-Discriminative+Low-Rank+Tensor+Recovery&rft.au=Zhang%2C+Shipeng&rft.au=Wang%2C+Lizhi&rft.au=Fu%2C+Ying&rft.au=Zhong%2C+Xiaoming&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=10182&rft.epage=10191&rft_id=info:doi/10.1109%2FICCV.2019.01028&rft.externalDocID=9008805 |