Computational Hyperspectral Imaging Based on Dimension-Discriminative Low-Rank Tensor Recovery

Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D signal as a 1D vector and treat the prior information within different dimensions in an indiscriminative manner, which ignores the high-dimensio...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 10182 - 10191
Main Authors Zhang, Shipeng, Wang, Lizhi, Fu, Ying, Zhong, Xiaoming, Huang, Hua
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2019
Online AccessGet full text

Cover

Loading…
Abstract Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D signal as a 1D vector and treat the prior information within different dimensions in an indiscriminative manner, which ignores the high-dimensionality nature of hyperspectral image (HSI) and thus results in poor quality reconstruction. In this paper, we propose to make full use of the high-dimensionality structure of the desired HSI to boost the reconstruction quality. We first build a high-order tensor by exploiting the nonlocal similarity in HSI. Then, we propose a dimension-discriminative low-rank tensor recovery (DLTR) model to characterize the structure prior adaptively in each dimension. By integrating the structure prior in DLTR with the system imaging process, we develop an optimization framework for HSI reconstruction, which is finally solved via the alternating minimization algorithm. Extensive experiments implemented with both synthetic and real data demonstrate that our method outperforms state-of-the-art methods.
AbstractList Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D signal as a 1D vector and treat the prior information within different dimensions in an indiscriminative manner, which ignores the high-dimensionality nature of hyperspectral image (HSI) and thus results in poor quality reconstruction. In this paper, we propose to make full use of the high-dimensionality structure of the desired HSI to boost the reconstruction quality. We first build a high-order tensor by exploiting the nonlocal similarity in HSI. Then, we propose a dimension-discriminative low-rank tensor recovery (DLTR) model to characterize the structure prior adaptively in each dimension. By integrating the structure prior in DLTR with the system imaging process, we develop an optimization framework for HSI reconstruction, which is finally solved via the alternating minimization algorithm. Extensive experiments implemented with both synthetic and real data demonstrate that our method outperforms state-of-the-art methods.
Author Fu, Ying
Zhang, Shipeng
Wang, Lizhi
Zhong, Xiaoming
Huang, Hua
Author_xml – sequence: 1
  givenname: Shipeng
  surname: Zhang
  fullname: Zhang, Shipeng
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Lizhi
  surname: Wang
  fullname: Wang, Lizhi
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Ying
  surname: Fu
  fullname: Fu, Ying
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Xiaoming
  surname: Zhong
  fullname: Zhong, Xiaoming
  organization: Beijing Institute of Space Mechanics and Electricity
– sequence: 5
  givenname: Hua
  surname: Huang
  fullname: Huang, Hua
  organization: Beijing Institute of Technology
BookMark eNotjl9LwzAUxaMouM09--BLvkDnTdKuN4_aqSsMhDF8dKTp7YiuSWnqZN_egj4dDucPvym78sETY3cCFkKAfiiL4n0hQegFCJB4weY6R5FLFCmCwks2kQohyTNIb9g0xk8ApSUuJ-yjCG33PZjBBW-OfH3uqI8d2aEfXdmag_MH_mQi1Tx4vnIt-ThWk5WLtnet8-PyRHwTfpKt8V98N-ah51uy4UT9-ZZdN-YYaf6vM7Z7ed4V62Tz9loWj5vEyaUeEiSr8lw3tExVVaM0WZVloha1ykZ-YyVWiLVsQDS2kSKtrKlSbUiqqpF1pmbs_u_WEdG-G8FMf95rAETI1C9oy1a2
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV.2019.01028
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728148038
1728148030
EISSN 2380-7504
EndPage 10191
ExternalDocumentID 9008805
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i269t-8ec3779fe643bd82a5b551d1d35803ac28b88d2f01fcf214bcab49ae23bf2d53
IEDL.DBID RIE
IngestDate Wed Aug 27 02:38:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-8ec3779fe643bd82a5b551d1d35803ac28b88d2f01fcf214bcab49ae23bf2d53
PageCount 10
ParticipantIDs ieee_primary_9008805
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.4101865
Snippet Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D...
SourceID ieee
SourceType Publisher
StartPage 10182
Title Computational Hyperspectral Imaging Based on Dimension-Discriminative Low-Rank Tensor Recovery
URI https://ieeexplore.ieee.org/document/9008805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXh002Q3j83V1tKKFZEqPVn2CaWYlJoi-uudTdKK4sFL2CSELDvsfDOzM98gdMkMeB3CpiSEAVxESCRLFKHSGMVUIvwyoD--j4dP4e00mjbQ1bYWxhhTJp8Zzw3Ls3ydq7ULlXVTACzuCEt3wHGrarU2Whdgnsc1dU_gp91Rr_fsErdSz5Gm8R-9U0roGLTQePPTKmNk4a0L6anPX3yM_53VHup8F-nhhy387KOGyQ5Qq7Yqcb1n39ropWrcUAf98BAcz6q-cgV3o9eySxG-BjDTOM9w37H9uwga6c-dRnGZMk4j4rv8nTyKbIEn8D5fYee3wjb46KDJ4GbSG5K6qwKZ0zgtCAcZJElqDdgiUnMqIglWkw60OxBlQlEuOdfU-oFVlgahVEKGqTCUSUt1xA5RM8szc4Swb-AjbaRm1oZUJVxEloU6ps5sU5F_jNputWbLijdjVi_Uyd-PT9Guk1eVKHeGmsVqbc4B8At5UUr6C4T5rnY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5KPeipaiu-3YNHN01289hcbS2ptkUkSk-WfUIpJlJTRH-9u0laUTx4CZuEkGWGnW92duYbAC6JMrsOpmPkm4G5MB9xEgmEuVKCiIi5ZUB_PAmTR_92Gkwb4GpTC6OUKpPPlGOH5Vm-zMXKhsq6sQEsaglLtwzuB15VrbW2uwboaViT93hu3B32ek82dSt2LG0a_dE9pQSPQQuM17-tckYWzqrgjvj8xcj433ntgs53mR683wDQHmiobB-0ar8S1qv2rQ2eq9YNddgPJmbrWVVYLs3d8KXsUwSvDZxJmGewb_n-bQwN9efWpthcGWsT4Sh_Rw8sW8DUvM-X0O5czUL46IB0cJP2ElT3VUBzHMYFokYLURRrZbwRLilmATfSlJ60R6KECUw5pRJr19NCY8_ngnE_ZgoTrrEMyAFoZnmmDgF0lflIKi6J1j4WEWWBJr4MsXXcROAegbaV1uy1Ys6Y1YI6_vvxBdhO0vFoNhpO7k7AjtVdlTZ3CprFcqXODPwX_LzU-hfK1LG_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Computational+Hyperspectral+Imaging+Based+on+Dimension-Discriminative+Low-Rank+Tensor+Recovery&rft.au=Zhang%2C+Shipeng&rft.au=Wang%2C+Lizhi&rft.au=Fu%2C+Ying&rft.au=Zhong%2C+Xiaoming&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=10182&rft.epage=10191&rft_id=info:doi/10.1109%2FICCV.2019.01028&rft.externalDocID=9008805