Artificial Fingerprinting for Generative Models: Rooting Deepfake Attribution in Training Data
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs). Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation. While existing research work on deepfake det...
Saved in:
Published in | Proceedings / IEEE International Conference on Computer Vision pp. 14428 - 14437 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs). Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation. While existing research work on deepfake detection demonstrates high accuracy, it is subject to advances in generation techniques and adversarial iterations on detection countermeasure techniques. Thus, we seek a proactive and sustainable solution on deepfake detection, that is agnostic to the evolution of generative models, by introducing artificial fingerprints into the models.Our approach is simple and effective. We first embed artificial fingerprints into training data, then validate a surprising discovery on the transferability of such fingerprints from training data to generative models, which in turn appears in the generated deepfakes. Experiments show that our fingerprinting solution (1) holds for a variety of cutting-edge generative models, (2) leads to a negligible side effect on generation quality, (3) stays robust against image-level and model-level perturbations, (4) stays hard to be detected by adversaries, and (5) converts deepfake detection and attribution into trivial tasks and outperforms the recent state-of-the-art baselines. Our solution closes the responsibility loop between publishing pre-trained generative model inventions and their possible misuses, which makes it independent of the current arms race. |
---|---|
AbstractList | Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs). Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation. While existing research work on deepfake detection demonstrates high accuracy, it is subject to advances in generation techniques and adversarial iterations on detection countermeasure techniques. Thus, we seek a proactive and sustainable solution on deepfake detection, that is agnostic to the evolution of generative models, by introducing artificial fingerprints into the models.Our approach is simple and effective. We first embed artificial fingerprints into training data, then validate a surprising discovery on the transferability of such fingerprints from training data to generative models, which in turn appears in the generated deepfakes. Experiments show that our fingerprinting solution (1) holds for a variety of cutting-edge generative models, (2) leads to a negligible side effect on generation quality, (3) stays robust against image-level and model-level perturbations, (4) stays hard to be detected by adversaries, and (5) converts deepfake detection and attribution into trivial tasks and outperforms the recent state-of-the-art baselines. Our solution closes the responsibility loop between publishing pre-trained generative model inventions and their possible misuses, which makes it independent of the current arms race. |
Author | Fritz, Mario Abdelnabi, Sahar Yu, Ning Skripniuk, Vladislav |
Author_xml | – sequence: 1 givenname: Ning surname: Yu fullname: Yu, Ning email: ningyu@mpi-inf.mpg.de organization: University of Maryland – sequence: 2 givenname: Vladislav surname: Skripniuk fullname: Skripniuk, Vladislav email: vladislav@mpi-inf.mpg.de organization: CISPA Helmholtz Center for Information Security – sequence: 3 givenname: Sahar surname: Abdelnabi fullname: Abdelnabi, Sahar email: sahar.abdelnabi@cispa.saarland organization: CISPA Helmholtz Center for Information Security – sequence: 4 givenname: Mario surname: Fritz fullname: Fritz, Mario email: fritz@cispa.saarland organization: CISPA Helmholtz Center for Information Security |
BookMark | eNotj81KAzEUhaMo2NY-gS7yAlNzM_l1V8a2FiqCVJeWTHMj0ZopmSj49pbq6hz4Dh-cITlLXUJCroFNAJi9WTbNizCW8wlnHCYMBJgTMrbagFJScANcnpIBrw2rtGTiggz7_p2x2nKjBuR1mksMcRvdjs5jesO8zzGVQ6Ohy3SBCbMr8RvpQ-dx19_Sp6474jvEfXAfSKel5Nh-ldglGhNdZxfTceCKuyTnwe16HP_niDzPZ-vmvlo9LpbNdFVFrmypTKuDDF4YZCEIIbHlVoHzMhjljXECtLBgvG8197KVNXeGh62ELTjJuKtH5OrPGxFxc7jw6fLPxmoAULr-BahsVyw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV48922.2021.01418 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781665428125 1665428120 |
EISSN | 2380-7504 |
EndPage | 14437 |
ExternalDocumentID | 9711167 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i269t-8b7f5fd48e0ff445eb2961ad5f86d88a4174918ddb72d5b532a82fc51c1a502a3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i269t-8b7f5fd48e0ff445eb2961ad5f86d88a4174918ddb72d5b532a82fc51c1a502a3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9711167 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.4190874 |
Snippet | Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs). Yet, the dark side of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 14428 |
SubjectTerms | accountability and ethics in vision Computational modeling Data models Fairness Fingerprint recognition Image and video manipulation detection and integrity methods Technological innovation Training data transparency Visualization Weapons |
Title | Artificial Fingerprinting for Generative Models: Rooting Deepfake Attribution in Training Data |
URI | https://ieeexplore.ieee.org/document/9711167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BTp5Qwfg7PXh0Y-vatfNGQIImGGPAcJJ0_ZEQzEZgXPzrbbeB0XjwtmyHLX1rv77X73sfwK1MHAgw4smAMY_EinpcCOVZdEpppCKNpRMnj5_j0ZQ8zeisAXd7LYzWuiSfad9dlmf5KpdbVyrrJix0xwYHcGATt0qrtVt1LczzuJbGhUHSfez33whPsNNa4dB3dEb-w0ClxI9hC8a7N1e0kaW_LVJffv5qyvjfTzuCzrdSD73sMegYGjo7gVa9tUT1xN204b23LklB9m9Dw7KS5wp6jvKM7K4VVc2n3cqHnDnax-YeveZ5-Xig9cqIpUa9Ym-OhRYZmtTeEmggCtGB6fBh0h95tbWCt8BxUng8ZYYaRbgOjCGE2vw6iUOhqOGx4lwQm6jYKCqVMqxc1LDg2EgaylDQAIvoFJpZnukzQJQpaie9iVOmiaQyUYHgaWSUoswYI8-h7YZrvqq6Z8zrkbr4-_YlHLqAVUWOK2gW662-trBfpDdlvL8AP9avHg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pCBeNve_Doxta1a-eNgAQUiDFgOEm6_kgIZiMwLv71ttvAaDx4W7bDln5r39ev730PgDsRWRCg2BEepQ4OJXEY59Ix6BSTQAYKCStOHo7C3gQ_Tcm0Au53WhilVE4-U669zM_yZSo2tlTWjKhvjw32wL7BfeIXaq3tumuAnoWlOM73oma_3X7DLEJWbYV81xIa2Q8LlRxBujUw3L67II4s3E0Wu-LzV1vG_37cEWh8a_Xgyw6FjkFFJSegViaXsJy66zp4b61yWpD532A3r-XZkp4lPUOTt8Ki_bRd-6C1R_tYP8DXNM0fd5Raar5QsJXt7LHgPIHj0l0CdnjGG2DSfRy3e05pruDMURhlDoupJlpipjytMSZmhx2FPpdEs1AyxrHZqpg4ShlTJG3cEGdIC-ILnxMP8eAUVJM0UWcAEiqJmfY6jKnCgohIepzFgZaSUK21OAd1O1yzZdE_Y1aO1MXft2_BQW88HMwG_dHzJTi0wStKHlegmq026tokAVl8k8f-C48psmc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Artificial+Fingerprinting+for+Generative+Models%3A+Rooting+Deepfake+Attribution+in+Training+Data&rft.au=Yu%2C+Ning&rft.au=Skripniuk%2C+Vladislav&rft.au=Abdelnabi%2C+Sahar&rft.au=Fritz%2C+Mario&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=14428&rft.epage=14437&rft_id=info:doi/10.1109%2FICCV48922.2021.01418&rft.externalDocID=9711167 |