Artificial Fingerprinting for Generative Models: Rooting Deepfake Attribution in Training Data

Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs). Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation. While existing research work on deepfake det...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 14428 - 14437
Main Authors Yu, Ning, Skripniuk, Vladislav, Abdelnabi, Sahar, Fritz, Mario
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs). Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation. While existing research work on deepfake detection demonstrates high accuracy, it is subject to advances in generation techniques and adversarial iterations on detection countermeasure techniques. Thus, we seek a proactive and sustainable solution on deepfake detection, that is agnostic to the evolution of generative models, by introducing artificial fingerprints into the models.Our approach is simple and effective. We first embed artificial fingerprints into training data, then validate a surprising discovery on the transferability of such fingerprints from training data to generative models, which in turn appears in the generated deepfakes. Experiments show that our fingerprinting solution (1) holds for a variety of cutting-edge generative models, (2) leads to a negligible side effect on generation quality, (3) stays robust against image-level and model-level perturbations, (4) stays hard to be detected by adversaries, and (5) converts deepfake detection and attribution into trivial tasks and outperforms the recent state-of-the-art baselines. Our solution closes the responsibility loop between publishing pre-trained generative model inventions and their possible misuses, which makes it independent of the current arms race.
AbstractList Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs). Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation. While existing research work on deepfake detection demonstrates high accuracy, it is subject to advances in generation techniques and adversarial iterations on detection countermeasure techniques. Thus, we seek a proactive and sustainable solution on deepfake detection, that is agnostic to the evolution of generative models, by introducing artificial fingerprints into the models.Our approach is simple and effective. We first embed artificial fingerprints into training data, then validate a surprising discovery on the transferability of such fingerprints from training data to generative models, which in turn appears in the generated deepfakes. Experiments show that our fingerprinting solution (1) holds for a variety of cutting-edge generative models, (2) leads to a negligible side effect on generation quality, (3) stays robust against image-level and model-level perturbations, (4) stays hard to be detected by adversaries, and (5) converts deepfake detection and attribution into trivial tasks and outperforms the recent state-of-the-art baselines. Our solution closes the responsibility loop between publishing pre-trained generative model inventions and their possible misuses, which makes it independent of the current arms race.
Author Fritz, Mario
Abdelnabi, Sahar
Yu, Ning
Skripniuk, Vladislav
Author_xml – sequence: 1
  givenname: Ning
  surname: Yu
  fullname: Yu, Ning
  email: ningyu@mpi-inf.mpg.de
  organization: University of Maryland
– sequence: 2
  givenname: Vladislav
  surname: Skripniuk
  fullname: Skripniuk, Vladislav
  email: vladislav@mpi-inf.mpg.de
  organization: CISPA Helmholtz Center for Information Security
– sequence: 3
  givenname: Sahar
  surname: Abdelnabi
  fullname: Abdelnabi, Sahar
  email: sahar.abdelnabi@cispa.saarland
  organization: CISPA Helmholtz Center for Information Security
– sequence: 4
  givenname: Mario
  surname: Fritz
  fullname: Fritz, Mario
  email: fritz@cispa.saarland
  organization: CISPA Helmholtz Center for Information Security
BookMark eNotj81KAzEUhaMo2NY-gS7yAlNzM_l1V8a2FiqCVJeWTHMj0ZopmSj49pbq6hz4Dh-cITlLXUJCroFNAJi9WTbNizCW8wlnHCYMBJgTMrbagFJScANcnpIBrw2rtGTiggz7_p2x2nKjBuR1mksMcRvdjs5jesO8zzGVQ6Ohy3SBCbMr8RvpQ-dx19_Sp6474jvEfXAfSKel5Nh-ldglGhNdZxfTceCKuyTnwe16HP_niDzPZ-vmvlo9LpbNdFVFrmypTKuDDF4YZCEIIbHlVoHzMhjljXECtLBgvG8197KVNXeGh62ELTjJuKtH5OrPGxFxc7jw6fLPxmoAULr-BahsVyw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV48922.2021.01418
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665428125
1665428120
EISSN 2380-7504
EndPage 14437
ExternalDocumentID 9711167
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i269t-8b7f5fd48e0ff445eb2961ad5f86d88a4174918ddb72d5b532a82fc51c1a502a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-8b7f5fd48e0ff445eb2961ad5f86d88a4174918ddb72d5b532a82fc51c1a502a3
PageCount 10
ParticipantIDs ieee_primary_9711167
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.4190874
Snippet Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs). Yet, the dark side of...
SourceID ieee
SourceType Publisher
StartPage 14428
SubjectTerms accountability
and ethics in vision
Computational modeling
Data models
Fairness
Fingerprint recognition
Image and video manipulation detection and integrity methods
Technological innovation
Training data
transparency
Visualization
Weapons
Title Artificial Fingerprinting for Generative Models: Rooting Deepfake Attribution in Training Data
URI https://ieeexplore.ieee.org/document/9711167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BTp5Qwfg7PXh0Y-vatfNGQIImGGPAcJJ0_ZEQzEZgXPzrbbeB0XjwtmyHLX1rv77X73sfwK1MHAgw4smAMY_EinpcCOVZdEpppCKNpRMnj5_j0ZQ8zeisAXd7LYzWuiSfad9dlmf5KpdbVyrrJix0xwYHcGATt0qrtVt1LczzuJbGhUHSfez33whPsNNa4dB3dEb-w0ClxI9hC8a7N1e0kaW_LVJffv5qyvjfTzuCzrdSD73sMegYGjo7gVa9tUT1xN204b23LklB9m9Dw7KS5wp6jvKM7K4VVc2n3cqHnDnax-YeveZ5-Xig9cqIpUa9Ym-OhRYZmtTeEmggCtGB6fBh0h95tbWCt8BxUng8ZYYaRbgOjCGE2vw6iUOhqOGx4lwQm6jYKCqVMqxc1LDg2EgaylDQAIvoFJpZnukzQJQpaie9iVOmiaQyUYHgaWSUoswYI8-h7YZrvqq6Z8zrkbr4-_YlHLqAVUWOK2gW662-trBfpDdlvL8AP9avHg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pCBeNve_Doxta1a-eNgAQUiDFgOEm6_kgIZiMwLv71ttvAaDx4W7bDln5r39ev730PgDsRWRCg2BEepQ4OJXEY59Ix6BSTQAYKCStOHo7C3gQ_Tcm0Au53WhilVE4-U669zM_yZSo2tlTWjKhvjw32wL7BfeIXaq3tumuAnoWlOM73oma_3X7DLEJWbYV81xIa2Q8LlRxBujUw3L67II4s3E0Wu-LzV1vG_37cEWh8a_Xgyw6FjkFFJSegViaXsJy66zp4b61yWpD532A3r-XZkp4lPUOTt8Ki_bRd-6C1R_tYP8DXNM0fd5Raar5QsJXt7LHgPIHj0l0CdnjGG2DSfRy3e05pruDMURhlDoupJlpipjytMSZmhx2FPpdEs1AyxrHZqpg4ShlTJG3cEGdIC-ILnxMP8eAUVJM0UWcAEiqJmfY6jKnCgohIepzFgZaSUK21OAd1O1yzZdE_Y1aO1MXft2_BQW88HMwG_dHzJTi0wStKHlegmq026tokAVl8k8f-C48psmc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Artificial+Fingerprinting+for+Generative+Models%3A+Rooting+Deepfake+Attribution+in+Training+Data&rft.au=Yu%2C+Ning&rft.au=Skripniuk%2C+Vladislav&rft.au=Abdelnabi%2C+Sahar&rft.au=Fritz%2C+Mario&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=14428&rft.epage=14437&rft_id=info:doi/10.1109%2FICCV48922.2021.01418&rft.externalDocID=9711167