Joint Temporal Convolutional Networks and Adversarial Discriminative Domain Adaptation for EEG-Based Cross-Subject Emotion Recognition
Cross-subject emotion recognition is one of the most challenging tasks in electroencephalogram (EEG)-based emotion recognition. To guarantee the constancy of feature representations across domains and to eliminate differences between domains, we explored the feasibility of combining temporal convolu...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 3214 - 3218 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cross-subject emotion recognition is one of the most challenging tasks in electroencephalogram (EEG)-based emotion recognition. To guarantee the constancy of feature representations across domains and to eliminate differences between domains, we explored the feasibility of combining temporal convolutional networks (TCNs) and adversarial discriminative domain adaptation (ADDA) algorithms in solving the problem of domain shift in EEG-based cross-subject emotion recognition. In light of EEG signals that have specific temporal properties, we chose the temporal model TCN as the feature encoder. To verify the validity of the proposed method, we conducted experiments on two public datasets: DEAP and DREAMER. The experimental results show that for the leave-one-subject-out evaluation, average accuracies of 64.33% (valence) and 63.25% (arousal) were obtained on the DEAP dataset, and average accuracies of 66.56% (valence) and 63.69% (arousal) were achieved on the DREAMER dataset. Extensive experiments demonstrate that our method for EEG-based cross-subject emotion recognition is effective. |
---|---|
AbstractList | Cross-subject emotion recognition is one of the most challenging tasks in electroencephalogram (EEG)-based emotion recognition. To guarantee the constancy of feature representations across domains and to eliminate differences between domains, we explored the feasibility of combining temporal convolutional networks (TCNs) and adversarial discriminative domain adaptation (ADDA) algorithms in solving the problem of domain shift in EEG-based cross-subject emotion recognition. In light of EEG signals that have specific temporal properties, we chose the temporal model TCN as the feature encoder. To verify the validity of the proposed method, we conducted experiments on two public datasets: DEAP and DREAMER. The experimental results show that for the leave-one-subject-out evaluation, average accuracies of 64.33% (valence) and 63.25% (arousal) were obtained on the DEAP dataset, and average accuracies of 66.56% (valence) and 63.69% (arousal) were achieved on the DREAMER dataset. Extensive experiments demonstrate that our method for EEG-based cross-subject emotion recognition is effective. |
Author | Zhong, Yongshi He, Zhipeng Pan, Jiahui |
Author_xml | – sequence: 1 givenname: Zhipeng surname: He fullname: He, Zhipeng organization: South China Normal University,School of Software,Guangzhou,China – sequence: 2 givenname: Yongshi surname: Zhong fullname: Zhong, Yongshi organization: South China Normal University,School of Software,Guangzhou,China – sequence: 3 givenname: Jiahui surname: Pan fullname: Pan, Jiahui organization: South China Normal University,School of Software,Guangzhou,China |
BookMark | eNotUEFOwzAQNAgk2sILuPgDKY6dOPaxpKGAKkC0SNwqJ94gl8au7LSID_BuXKi02p3Rzq40M0Rn1llACKdknKZE3jyUk8XiJWOS0jElscki45yQEzRMOc8zEoufogFlhUxSSd4v0DCENSFEFJkYoJ9HZ2yPl9BtnVcbXDq7d5tdb5yN7An6L-c_A1ZW44negw_Km7iYmtB40xmrerMHPHWdMjYq1LZXh1vcOo-rapbcqgAal96FkCx29RqaHled-9O8QuM-rDngS3Teqk2Aq-Mcobe7alneJ_PnWbQ4Twzlsk84Fbnmuai1YKoGAVJrXcccaMMosDqnhWhT1co6Z5mkNYBsiyajTZoJAKbZCF3__zUAsNpGC8p_r46ZsV9-rWc3 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP43922.2022.9746600 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1665405406 9781665405409 |
EISSN | 2379-190X |
EndPage | 3218 |
ExternalDocumentID | 9746600 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i269t-6285d658bd83abe8e9dddb1092c32e3b5278f1af9b53492bee9f7c42c148ee3d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i269t-6285d658bd83abe8e9dddb1092c32e3b5278f1af9b53492bee9f7c42c148ee3d3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9746600 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.376641 |
Snippet | Cross-subject emotion recognition is one of the most challenging tasks in electroencephalogram (EEG)-based emotion recognition. To guarantee the constancy of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3214 |
SubjectTerms | Adaptation models Adversarial discriminative domain adaptation (ADDA) Brain modeling Convolution EEG Electroencephalography Emotion recognition Signal processing algorithms Speech recognition Temporal convolutional network (TCN) |
Title | Joint Temporal Convolutional Networks and Adversarial Discriminative Domain Adaptation for EEG-Based Cross-Subject Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/9746600 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ734AOM7e_DoAm23r6NCEUkgRCDhRna7swlRWyLFgz_A3-1sW_ARD16atummzXQy38zsfDOEXHsBWOA5imGI7DEeK8ECzjkTaAqF1kL42hCcB0OvN-X9mTurkJstFwYA8uIzaJjTfC9fpfHapMqa6Pt6CNA7ZAcDt4KrtbW6gc-DTaVOK2w-tG_H4xGirW3YVngo1_4YopJjSHefDDZvL0pHnhrrTDbi91-NGf_7eQek_sXWo6MtDh2SCiRHZO9bo8Ea-einiySjk6IP1TPFlW-lzuHVsCgFX1GRKJpPaF4Jo5e0szBGxRTLGKNIO-mLWCT4hFgWG_gUPV4aRffsDrFQ0bZBXIamyOR2aFQMCKKPmxKlNKmTaTeatHusnMDAFrYXZszwKxX6KFIFjpAQQKiUkihfO3ZscKRr-4G2hA6la7ocSoBQ-zG3YwyyABzlHJNqkiZwQqhvIQy2HO5qxbmwQYBloSEW2jhMsQenpGYkOl8WTTbmpTDP_r59TnbNXy1yIRekmr2u4RK9g0xe5WrxCXpQvWk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-3YNHF2y7fR0VioBAiEDCjWy706RRWyLFgz_A3-1sW_ARD16atummzXTzfbOz880QcmU5oIFlSIZLZIvxQArmcM6ZQCgUYSiEHSqBc39gtSe8OzWnJXK91sIAQJZ8BjV1mu3lyyRYqlBZHX1fCwl6g2wi75tartZa465jc2eVq3Pj1juN29FoiHyrK70VHorRP9qoZCzS2iX91fvz5JGn2jL1a8H7r9KM__3APVL90uvR4ZqJ9kkJ4gOy863UYIV8dJMoTuk4r0T1THHkWzHr8GqQJ4MvqIglzXo0L4SambQZKVhR6TIKFmkzeRFRjE-Ieb6FT9HnpZ53z-6QDSVtKM5lCEYqukO9vEUQfVwlKSVxlUxa3rjRZkUPBhbplpsypbCU6KX40jGEDw64Ukof7asHhg6Gb-q2E2oidH1T1Tn0AdzQDrge4DILwJDGISnHSQxHhNoaEuGNwc1Qci50EKBpCMUiVC5TYMExqSiLzuZ5mY1ZYcyTv29fkq32uN-b9TqDh1Oyrf5wHhk5I-X0dQnn6Cuk_kU2RT4BhNHAsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Joint+Temporal+Convolutional+Networks+and+Adversarial+Discriminative+Domain+Adaptation+for+EEG-Based+Cross-Subject+Emotion+Recognition&rft.au=He%2C+Zhipeng&rft.au=Zhong%2C+Yongshi&rft.au=Pan%2C+Jiahui&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=3214&rft.epage=3218&rft_id=info:doi/10.1109%2FICASSP43922.2022.9746600&rft.externalDocID=9746600 |