Joint Temporal Convolutional Networks and Adversarial Discriminative Domain Adaptation for EEG-Based Cross-Subject Emotion Recognition

Cross-subject emotion recognition is one of the most challenging tasks in electroencephalogram (EEG)-based emotion recognition. To guarantee the constancy of feature representations across domains and to eliminate differences between domains, we explored the feasibility of combining temporal convolu...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 3214 - 3218
Main Authors He, Zhipeng, Zhong, Yongshi, Pan, Jiahui
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cross-subject emotion recognition is one of the most challenging tasks in electroencephalogram (EEG)-based emotion recognition. To guarantee the constancy of feature representations across domains and to eliminate differences between domains, we explored the feasibility of combining temporal convolutional networks (TCNs) and adversarial discriminative domain adaptation (ADDA) algorithms in solving the problem of domain shift in EEG-based cross-subject emotion recognition. In light of EEG signals that have specific temporal properties, we chose the temporal model TCN as the feature encoder. To verify the validity of the proposed method, we conducted experiments on two public datasets: DEAP and DREAMER. The experimental results show that for the leave-one-subject-out evaluation, average accuracies of 64.33% (valence) and 63.25% (arousal) were obtained on the DEAP dataset, and average accuracies of 66.56% (valence) and 63.69% (arousal) were achieved on the DREAMER dataset. Extensive experiments demonstrate that our method for EEG-based cross-subject emotion recognition is effective.
AbstractList Cross-subject emotion recognition is one of the most challenging tasks in electroencephalogram (EEG)-based emotion recognition. To guarantee the constancy of feature representations across domains and to eliminate differences between domains, we explored the feasibility of combining temporal convolutional networks (TCNs) and adversarial discriminative domain adaptation (ADDA) algorithms in solving the problem of domain shift in EEG-based cross-subject emotion recognition. In light of EEG signals that have specific temporal properties, we chose the temporal model TCN as the feature encoder. To verify the validity of the proposed method, we conducted experiments on two public datasets: DEAP and DREAMER. The experimental results show that for the leave-one-subject-out evaluation, average accuracies of 64.33% (valence) and 63.25% (arousal) were obtained on the DEAP dataset, and average accuracies of 66.56% (valence) and 63.69% (arousal) were achieved on the DREAMER dataset. Extensive experiments demonstrate that our method for EEG-based cross-subject emotion recognition is effective.
Author Zhong, Yongshi
He, Zhipeng
Pan, Jiahui
Author_xml – sequence: 1
  givenname: Zhipeng
  surname: He
  fullname: He, Zhipeng
  organization: South China Normal University,School of Software,Guangzhou,China
– sequence: 2
  givenname: Yongshi
  surname: Zhong
  fullname: Zhong, Yongshi
  organization: South China Normal University,School of Software,Guangzhou,China
– sequence: 3
  givenname: Jiahui
  surname: Pan
  fullname: Pan, Jiahui
  organization: South China Normal University,School of Software,Guangzhou,China
BookMark eNotUEFOwzAQNAgk2sILuPgDKY6dOPaxpKGAKkC0SNwqJ94gl8au7LSID_BuXKi02p3Rzq40M0Rn1llACKdknKZE3jyUk8XiJWOS0jElscki45yQEzRMOc8zEoufogFlhUxSSd4v0DCENSFEFJkYoJ9HZ2yPl9BtnVcbXDq7d5tdb5yN7An6L-c_A1ZW44negw_Km7iYmtB40xmrerMHPHWdMjYq1LZXh1vcOo-rapbcqgAal96FkCx29RqaHled-9O8QuM-rDngS3Teqk2Aq-Mcobe7alneJ_PnWbQ4Twzlsk84Fbnmuai1YKoGAVJrXcccaMMosDqnhWhT1co6Z5mkNYBsiyajTZoJAKbZCF3__zUAsNpGC8p_r46ZsV9-rWc3
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9746600
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 3218
ExternalDocumentID 9746600
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i269t-6285d658bd83abe8e9dddb1092c32e3b5278f1af9b53492bee9f7c42c148ee3d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-6285d658bd83abe8e9dddb1092c32e3b5278f1af9b53492bee9f7c42c148ee3d3
PageCount 5
ParticipantIDs ieee_primary_9746600
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.376641
Snippet Cross-subject emotion recognition is one of the most challenging tasks in electroencephalogram (EEG)-based emotion recognition. To guarantee the constancy of...
SourceID ieee
SourceType Publisher
StartPage 3214
SubjectTerms Adaptation models
Adversarial discriminative domain adaptation (ADDA)
Brain modeling
Convolution
EEG
Electroencephalography
Emotion recognition
Signal processing algorithms
Speech recognition
Temporal convolutional network (TCN)
Title Joint Temporal Convolutional Networks and Adversarial Discriminative Domain Adaptation for EEG-Based Cross-Subject Emotion Recognition
URI https://ieeexplore.ieee.org/document/9746600
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ734AOM7e_DoAm23r6NCEUkgRCDhRna7swlRWyLFgz_A3-1sW_ARD16atummzXQy38zsfDOEXHsBWOA5imGI7DEeK8ECzjkTaAqF1kL42hCcB0OvN-X9mTurkJstFwYA8uIzaJjTfC9fpfHapMqa6Pt6CNA7ZAcDt4KrtbW6gc-DTaVOK2w-tG_H4xGirW3YVngo1_4YopJjSHefDDZvL0pHnhrrTDbi91-NGf_7eQek_sXWo6MtDh2SCiRHZO9bo8Ea-einiySjk6IP1TPFlW-lzuHVsCgFX1GRKJpPaF4Jo5e0szBGxRTLGKNIO-mLWCT4hFgWG_gUPV4aRffsDrFQ0bZBXIamyOR2aFQMCKKPmxKlNKmTaTeatHusnMDAFrYXZszwKxX6KFIFjpAQQKiUkihfO3ZscKRr-4G2hA6la7ocSoBQ-zG3YwyyABzlHJNqkiZwQqhvIQy2HO5qxbmwQYBloSEW2jhMsQenpGYkOl8WTTbmpTDP_r59TnbNXy1yIRekmr2u4RK9g0xe5WrxCXpQvWk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-3YNHF2y7fR0VioBAiEDCjWy706RRWyLFgz_A3-1sW_ARD16atummzXTzfbOz880QcmU5oIFlSIZLZIvxQArmcM6ZQCgUYSiEHSqBc39gtSe8OzWnJXK91sIAQJZ8BjV1mu3lyyRYqlBZHX1fCwl6g2wi75tartZa465jc2eVq3Pj1juN29FoiHyrK70VHorRP9qoZCzS2iX91fvz5JGn2jL1a8H7r9KM__3APVL90uvR4ZqJ9kkJ4gOy863UYIV8dJMoTuk4r0T1THHkWzHr8GqQJ4MvqIglzXo0L4SambQZKVhR6TIKFmkzeRFRjE-Ieb6FT9HnpZ53z-6QDSVtKM5lCEYqukO9vEUQfVwlKSVxlUxa3rjRZkUPBhbplpsypbCU6KX40jGEDw64Ukof7asHhg6Gb-q2E2oidH1T1Tn0AdzQDrge4DILwJDGISnHSQxHhNoaEuGNwc1Qci50EKBpCMUiVC5TYMExqSiLzuZ5mY1ZYcyTv29fkq32uN-b9TqDh1Oyrf5wHhk5I-X0dQnn6Cuk_kU2RT4BhNHAsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Joint+Temporal+Convolutional+Networks+and+Adversarial+Discriminative+Domain+Adaptation+for+EEG-Based+Cross-Subject+Emotion+Recognition&rft.au=He%2C+Zhipeng&rft.au=Zhong%2C+Yongshi&rft.au=Pan%2C+Jiahui&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=3214&rft.epage=3218&rft_id=info:doi/10.1109%2FICASSP43922.2022.9746600&rft.externalDocID=9746600