Adaptive Pyramid Context Network for Semantic Segmentation

Recent studies witnessed that context features can significantly improve the performance of deep semantic segmentation networks. Current context based segmentation methods differ with each other in how to construct context features and perform differently in practice. This paper firstly introduces t...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 7511 - 7520
Main Authors He, Junjun, Deng, Zhongying, Zhou, Lei, Wang, Yali, Qiao, Yu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies witnessed that context features can significantly improve the performance of deep semantic segmentation networks. Current context based segmentation methods differ with each other in how to construct context features and perform differently in practice. This paper firstly introduces three desirable properties of context features in segmentation task. Specially, we find that Global-guided Local Affinity (GLA) can play a vital role in constructing effective context features, while this property has been largely ignored in previous works. Based on this analysis, this paper proposes Adaptive Pyramid Context Network (APCNet) for semantic segmentation. APCNet adaptively constructs multi-scale contextual representations with multiple well-designed Adaptive Context Modules (ACMs). Specifically, each ACM leverages a global image representation as a guidance to estimate the local affinity coefficients for each sub-region, and then calculates a context vector with these affinities. We empirically evaluate our APCNet on three semantic segmentation and scene parsing datasets, including PASCAL VOC 2012, Pascal-Context, and ADE20K dataset. Experimental results show that APCNet achieves state-of-the-art performance on all three benchmarks, and obtains a new record 84.2% on PASCAL VOC 2012 test set without MS COCO pre-trained and any post-processing.
AbstractList Recent studies witnessed that context features can significantly improve the performance of deep semantic segmentation networks. Current context based segmentation methods differ with each other in how to construct context features and perform differently in practice. This paper firstly introduces three desirable properties of context features in segmentation task. Specially, we find that Global-guided Local Affinity (GLA) can play a vital role in constructing effective context features, while this property has been largely ignored in previous works. Based on this analysis, this paper proposes Adaptive Pyramid Context Network (APCNet) for semantic segmentation. APCNet adaptively constructs multi-scale contextual representations with multiple well-designed Adaptive Context Modules (ACMs). Specifically, each ACM leverages a global image representation as a guidance to estimate the local affinity coefficients for each sub-region, and then calculates a context vector with these affinities. We empirically evaluate our APCNet on three semantic segmentation and scene parsing datasets, including PASCAL VOC 2012, Pascal-Context, and ADE20K dataset. Experimental results show that APCNet achieves state-of-the-art performance on all three benchmarks, and obtains a new record 84.2% on PASCAL VOC 2012 test set without MS COCO pre-trained and any post-processing.
Author Qiao, Yu
Wang, Yali
He, Junjun
Deng, Zhongying
Zhou, Lei
Author_xml – sequence: 1
  givenname: Junjun
  surname: He
  fullname: He, Junjun
  organization: SJTU
– sequence: 2
  givenname: Zhongying
  surname: Deng
  fullname: Deng, Zhongying
  organization: SIAT
– sequence: 3
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 4
  givenname: Yali
  surname: Wang
  fullname: Wang, Yali
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Yu
  surname: Qiao
  fullname: Qiao, Yu
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
BookMark eNotjstOwzAQAA0CiVJy5sAlP5Dg9SZ-cKsiCkgVVLyulROvkYE4VWIB_XtAcJo5jeaYHcQhEmOnwEsAbs6b5_V9KTiYknOl-B7LjNKghAYUBvU-mwGXWEgD5ohl0_TKOUcBII2esYuFs9sUPihf70bbB5c3Q0z0lfJbSp_D-Jb7YcwfqLcxhe5HXnqKyaYwxBN26O37RNk_5-xpefnYXBeru6ubZrEqgpAmFWiwdVC3oKBSJLR0gmotoQLv0ZES2DmrpdVV5SQieeXrrpO_i7UTrcA5O_vrBiLabMfQ23G30aauhNb4Dek5SR4
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2019.00770
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728132938
1728132932
EISSN 1063-6919
EndPage 7520
ExternalDocumentID 8954288
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i269t-393bd15b17147e286d2e586141ff3de723cda86a844d633ef7f5cc603215d2b23
IEDL.DBID RIE
IngestDate Wed Aug 27 02:24:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-393bd15b17147e286d2e586141ff3de723cda86a844d633ef7f5cc603215d2b23
PageCount 10
ParticipantIDs ieee_primary_8954288
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.5652816
Snippet Recent studies witnessed that context features can significantly improve the performance of deep semantic segmentation networks. Current context based...
SourceID ieee
SourceType Publisher
StartPage 7511
SubjectTerms Adaptive systems
Benchmark testing
Computer vision
Deep Learning
Grouping and Shape
Image representation
Image segmentation
Pattern recognition
Segmentation
Semantics
Vision Applications and Systems
Title Adaptive Pyramid Context Network for Semantic Segmentation
URI https://ieeexplore.ieee.org/document/8954288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXh0wNq1a70ZoiEmEKJiuJGufTPEMAiORP3rbbeJxnjw1uzS5TXt9177fd8DuNCMeVRAV5ZQFTiEZkHigCUw3BrUEQpFvcB5OBKDSXQ35dMaXG61MIhYkM-w44fFW75dmo2_KutKxV22LOtQd4VbqdXa3qcwV8kIJSv3nrCnuv2n8b3nbnlDytg3I_7RPqVAj9smDL_mLUkjL51NnnTMxy9Lxv_-2C60v3V6ZLxFoD2oYbYPzSqxJNW2fW3B1bXVK3-ukfH7Wi_mlhSmVG85GZUscOJSV_KACxfmuXGD50UlScraMLm9eewPgqppQjCnQuUBUyyxIU98Y_MYqRSWIpcOhMM0ZRZjyozVUmgZRVYwhmmccmOEjx-3NKHsABrZMsNDIDpkrjph1jKduq2uFZpQGMtT20t0ZOgRtHwoZqvSF2NWReH4788nsOMXo6RZnUIjX2_wzAF6npwXK_kJyP2glw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwELWqcoBTgYLY8QGOaRs7dhIkDohFhS6qgKLeimNPUIW6CFKxfAu_wr8xTkJBiCsSN8vKxePRvBnnzRtC9hTnFhUAyxIWOojQ3IkQWBwtjAblgQyZbXButWW96130RK9A3ma9MACQks-gYpfpv3wz1lP7VFYNQoHZcpBTKBvw8oQF2uPh-Qne5j5jZ6fXx3UnnyHgDJgME4eHPDKuiOycbx9YIA0DESAmuXHMDfiMa6MCqQLPM5JziP1YaC1rHKHQsMjKGmCAn8M8Q7CsO2z2goOfuDIMcr0gtxZWj286l5YtZiUwfTv--NvAlhSvzkrk_fOkGU3lvjJNoop-_SEC-V9NsUhWvjoRaWeGsUukAKNlUspTZ5oHpscyOTgyamIjN-28PKjhwNBUdus5oe2M504xOadXMERHGmhc3A3zpqvRCun-yTlWSXE0HsEaocrlWH9xY7iKMZipELQrtRGxqUXK02ydlK3p-5NM-aOfW33j9-1dMl-_bjX7zfN2Y5MsWEfISGVbpJg8TGEb05ck2km9iJLbv76rD_JE_L0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Adaptive+Pyramid+Context+Network+for+Semantic+Segmentation&rft.au=He%2C+Junjun&rft.au=Deng%2C+Zhongying&rft.au=Zhou%2C+Lei&rft.au=Wang%2C+Yali&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7511&rft.epage=7520&rft_id=info:doi/10.1109%2FCVPR.2019.00770&rft.externalDocID=8954288