Myocardial Infarction Detection Based on Multi-lead Ensemble Neural Network
Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior myocardial infarction (AMI) and inferior myocardial infa...
Saved in:
Published in | Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2019; pp. 2614 - 2617 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1557-170X 1558-4615 |
DOI | 10.1109/EMBC.2019.8856392 |
Cover
Abstract | Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior myocardial infarction (AMI) and inferior myocardial infarction (IMI) from healthy control (HC) respectively. In the study, three kinds of sub-networks and multi-lead ECG signals are combined, which fully explores the information of ECG signals and improves the classification performance. The algorithm is evaluated on the PTB database by 5-fold inter-subject cross-validation and the sensitivity (Se), specificity (Sp) and area under the curve (AUC) of AMI detection are 98.35%, 97.49%, 97.92%; The Se, Sp, and AUC of IMI detection are 93.17%, 92.02%, 92.60%. The proposed method achieves the state of the art results on both tasks and outperforms the baseline methods. Hence, the proposed method is potential for automatic MI diagnosis. |
---|---|
AbstractList | Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior myocardial infarction (AMI) and inferior myocardial infarction (IMI) from healthy control (HC) respectively. In the study, three kinds of sub-networks and multi-lead ECG signals are combined, which fully explores the information of ECG signals and improves the classification performance. The algorithm is evaluated on the PTB database by 5-fold inter-subject cross-validation and the sensitivity (Se), specificity (Sp) and area under the curve (AUC) of AMI detection are 98.35%, 97.49%, 97.92%; The Se, Sp, and AUC of IMI detection are 93.17%, 92.02%, 92.60%. The proposed method achieves the state of the art results on both tasks and outperforms the baseline methods. Hence, the proposed method is potential for automatic MI diagnosis. |
Author | Jia, D.Y. Yan, C. Hu, J. You, T.Y. Li, Z.Q. Wang, H.M. Zhao, W. |
Author_xml | – sequence: 1 givenname: H.M. surname: Wang fullname: Wang, H.M. organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China – sequence: 2 givenname: W. surname: Zhao fullname: Zhao, W. organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China – sequence: 3 givenname: D.Y. surname: Jia fullname: Jia, D.Y. organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China – sequence: 4 givenname: J. surname: Hu fullname: Hu, J. organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China – sequence: 5 givenname: Z.Q. surname: Li fullname: Li, Z.Q. organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China – sequence: 6 givenname: C. surname: Yan fullname: Yan, C. organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China – sequence: 7 givenname: T.Y. surname: You fullname: You, T.Y. organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31946432$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kMtOwzAQRQ0qog_6AQgJ5QdSPHYc20taClQ0ZdMFu8qPsRRIkyoPof49ES2s5khz7khzx2RQViUScgt0BkD1wzKbL2aMgp4pJVKu2QWZaqlAcJUCBxCXZARCqDhJQQx-WcYg6ceQjJvmk1JGqYBrMuSgkzThbETesmPlTO1zU0SrMpjatXlVRk_Y4onmpkEf9ZB1RZvHBRofLcsG97bAaINd3Qc32H5X9dcNuQqmaHB6nhOyfV5uF6_x-v1ltXhcxzkTuo2tl9Jql9pgmQtJEC4oR4U0jEkfEs4ZC4xpbYVXxnFtvKJGGyFtyj1FPiH3p7OHzu7R7w51vjf1cff3VC_cnYQcEf_X58r4DyDNXPw |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO CGR CUY CVF ECM EIF NPM |
DOI | 10.1109/EMBC.2019.8856392 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781538613115 1538613115 |
EISSN | 1558-4615 |
EndPage | 2617 |
ExternalDocumentID | 31946432 8856392 |
Genre | orig-research Journal Article |
GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM CGR CUY CVF ECM EIF IPLJI NPM |
ID | FETCH-LOGICAL-i259t-bd77b9c6bfb2cf4f5cf8c057a227df43322f2299b5d8ac39ad80a9a57b63d0e3 |
IEDL.DBID | RIE |
ISSN | 1557-170X |
IngestDate | Thu Jan 02 22:58:24 EST 2025 Wed Aug 27 02:41:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i259t-bd77b9c6bfb2cf4f5cf8c057a227df43322f2299b5d8ac39ad80a9a57b63d0e3 |
PMID | 31946432 |
PageCount | 4 |
ParticipantIDs | pubmed_primary_31946432 ieee_primary_8856392 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) |
PublicationTitleAbbrev | EMBC |
PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020051 ssj0061641 |
Score | 2.2556715 |
Snippet | Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this... |
SourceID | pubmed ieee |
SourceType | Index Database Publisher |
StartPage | 2614 |
SubjectTerms | Algorithms Convolution Diagnosis, Computer-Assisted Electrocardiography Feature extraction Humans Kernel Myocardial Infarction - diagnosis Myocardium Neural networks Neural Networks, Computer Sensitivity and Specificity |
Title | Myocardial Infarction Detection Based on Multi-lead Ensemble Neural Network |
URI | https://ieeexplore.ieee.org/document/8856392 https://www.ncbi.nlm.nih.gov/pubmed/31946432 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTrDwaIHyUgZG3JbEduK1pVUBpWIoUrfKTwlRUgTpAL-ecxICqhjYTrJOse7O-Xz23WeAS0QhJiJNCaXKEKqZIZInlDjDYpP4ZlDpD_TTKZ880rs5mzfgqu6FsdYWxWe268XiLt-s9NoflfWShCGg4g93C8Os7NWqkysfXdWt5XVf9EbpYOgLt3wkFErV6ykbu8cCRca7kH5_vyweee6uc9XVnxvUjP-d4B60f_r1gocaifahYbMD2PlFNdiC-_QDUctHwzK4zRyGt_dIcGNzW0oDhDMToFC05JIl-j4YZe_2RS1t4Ck8UHFa1oy3YTYezYYTUj2kQJ4wu8mJMnGshObKqVA76ph2icaNmgzD2DjPYBa6EHFJMZNIHQmJXpJCsljxyPRtdAjNbJXZYwiEZ8sxnBlmIypFLLmMfRZEI5dIxkUHWt4qi9eSKmNRGaQDR6XV6wFc-RS1wpO_FU5h2zuvrIs9g2b-trbniP65uijc_gXUMK7i |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPKgXH6DiswePLmC723avIASEEg-YcCP7TIxYjJaD_npn24qGePA2STPJZma238zuzLcA14hCjAeKEkqlJlQxTUQYU2I1i3TshkGFO9BPJuHgkd7P2KwCN-tZGGNM3nxmmk7M7_L1Uq3cUVkrjhkCKv5wtxD3KSumtdbllYuv8t7yts1bvaTTda1bLhZytfL9lI38MceR_h4k3yso2keem6tMNtXnBjnjf5e4D_WfiT3vYY1FB1Ax6SHs_iIbrMEo-UDccvGw8IapxQB3PvHuTGYKqYOApj0U8qFcskDve7303bzIhfEciQcqToqu8TpM-71pd0DKpxTIE9Y3GZE6iiRXobTSV5ZapmysMFUTvh9p6zjMfOsjMkmmY6ECLtBPggsWyTDQbRMcQTVdpuYEPO74cnTINDMBFTwSoYhcHUQDGwsW8gbUnFXmrwVZxrw0SAOOC6uvP-Dep6jln_6tcAXbg2kyno-Hk9EZ7DhHFl2y51DN3lbmAnOBTF7mIfAFKqKyLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Myocardial+Infarction+Detection+Based+on+Multi-lead+Ensemble+Neural+Network&rft.au=Wang%2C+H.M.&rft.au=Zhao%2C+W.&rft.au=Jia%2C+D.Y.&rft.au=Hu%2C+J.&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=2614&rft.epage=2617&rft_id=info:doi/10.1109%2FEMBC.2019.8856392&rft.externalDocID=8856392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon |