Myocardial Infarction Detection Based on Multi-lead Ensemble Neural Network

Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior myocardial infarction (AMI) and inferior myocardial infa...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2019; pp. 2614 - 2617
Main Authors Wang, H.M., Zhao, W., Jia, D.Y., Hu, J., Li, Z.Q., Yan, C., You, T.Y.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
Subjects
Online AccessGet full text
ISSN1557-170X
1558-4615
DOI10.1109/EMBC.2019.8856392

Cover

Abstract Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior myocardial infarction (AMI) and inferior myocardial infarction (IMI) from healthy control (HC) respectively. In the study, three kinds of sub-networks and multi-lead ECG signals are combined, which fully explores the information of ECG signals and improves the classification performance. The algorithm is evaluated on the PTB database by 5-fold inter-subject cross-validation and the sensitivity (Se), specificity (Sp) and area under the curve (AUC) of AMI detection are 98.35%, 97.49%, 97.92%; The Se, Sp, and AUC of IMI detection are 93.17%, 92.02%, 92.60%. The proposed method achieves the state of the art results on both tasks and outperforms the baseline methods. Hence, the proposed method is potential for automatic MI diagnosis.
AbstractList Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior myocardial infarction (AMI) and inferior myocardial infarction (IMI) from healthy control (HC) respectively. In the study, three kinds of sub-networks and multi-lead ECG signals are combined, which fully explores the information of ECG signals and improves the classification performance. The algorithm is evaluated on the PTB database by 5-fold inter-subject cross-validation and the sensitivity (Se), specificity (Sp) and area under the curve (AUC) of AMI detection are 98.35%, 97.49%, 97.92%; The Se, Sp, and AUC of IMI detection are 93.17%, 92.02%, 92.60%. The proposed method achieves the state of the art results on both tasks and outperforms the baseline methods. Hence, the proposed method is potential for automatic MI diagnosis.
Author Jia, D.Y.
Yan, C.
Hu, J.
You, T.Y.
Li, Z.Q.
Wang, H.M.
Zhao, W.
Author_xml – sequence: 1
  givenname: H.M.
  surname: Wang
  fullname: Wang, H.M.
  organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China
– sequence: 2
  givenname: W.
  surname: Zhao
  fullname: Zhao, W.
  organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China
– sequence: 3
  givenname: D.Y.
  surname: Jia
  fullname: Jia, D.Y.
  organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China
– sequence: 4
  givenname: J.
  surname: Hu
  fullname: Hu, J.
  organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China
– sequence: 5
  givenname: Z.Q.
  surname: Li
  fullname: Li, Z.Q.
  organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China
– sequence: 6
  givenname: C.
  surname: Yan
  fullname: Yan, C.
  organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China
– sequence: 7
  givenname: T.Y.
  surname: You
  fullname: You, T.Y.
  organization: Central Research Institute for Guangzhou Shiyuan Electronics Company Limited, 510530, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31946432$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRQ0qog_6AQgJ5QdSPHYc20taClQ0ZdMFu8qPsRRIkyoPof49ES2s5khz7khzx2RQViUScgt0BkD1wzKbL2aMgp4pJVKu2QWZaqlAcJUCBxCXZARCqDhJQQx-WcYg6ceQjJvmk1JGqYBrMuSgkzThbETesmPlTO1zU0SrMpjatXlVRk_Y4onmpkEf9ZB1RZvHBRofLcsG97bAaINd3Qc32H5X9dcNuQqmaHB6nhOyfV5uF6_x-v1ltXhcxzkTuo2tl9Jql9pgmQtJEC4oR4U0jEkfEs4ZC4xpbYVXxnFtvKJGGyFtyj1FPiH3p7OHzu7R7w51vjf1cff3VC_cnYQcEf_X58r4DyDNXPw
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC.2019.8856392
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538613115
1538613115
EISSN 1558-4615
EndPage 2617
ExternalDocumentID 31946432
8856392
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i259t-bd77b9c6bfb2cf4f5cf8c057a227df43322f2299b5d8ac39ad80a9a57b63d0e3
IEDL.DBID RIE
ISSN 1557-170X
IngestDate Thu Jan 02 22:58:24 EST 2025
Wed Aug 27 02:41:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i259t-bd77b9c6bfb2cf4f5cf8c057a227df43322f2299b5d8ac39ad80a9a57b63d0e3
PMID 31946432
PageCount 4
ParticipantIDs pubmed_primary_31946432
ieee_primary_8856392
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0061641
Score 2.2556715
Snippet Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 2614
SubjectTerms Algorithms
Convolution
Diagnosis, Computer-Assisted
Electrocardiography
Feature extraction
Humans
Kernel
Myocardial Infarction - diagnosis
Myocardium
Neural networks
Neural Networks, Computer
Sensitivity and Specificity
Title Myocardial Infarction Detection Based on Multi-lead Ensemble Neural Network
URI https://ieeexplore.ieee.org/document/8856392
https://www.ncbi.nlm.nih.gov/pubmed/31946432
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTrDwaIHyUgZG3JbEduK1pVUBpWIoUrfKTwlRUgTpAL-ecxICqhjYTrJOse7O-Xz23WeAS0QhJiJNCaXKEKqZIZInlDjDYpP4ZlDpD_TTKZ880rs5mzfgqu6FsdYWxWe268XiLt-s9NoflfWShCGg4g93C8Os7NWqkysfXdWt5XVf9EbpYOgLt3wkFErV6ykbu8cCRca7kH5_vyweee6uc9XVnxvUjP-d4B60f_r1gocaifahYbMD2PlFNdiC-_QDUctHwzK4zRyGt_dIcGNzW0oDhDMToFC05JIl-j4YZe_2RS1t4Ck8UHFa1oy3YTYezYYTUj2kQJ4wu8mJMnGshObKqVA76ph2icaNmgzD2DjPYBa6EHFJMZNIHQmJXpJCsljxyPRtdAjNbJXZYwiEZ8sxnBlmIypFLLmMfRZEI5dIxkUHWt4qi9eSKmNRGaQDR6XV6wFc-RS1wpO_FU5h2zuvrIs9g2b-trbniP65uijc_gXUMK7i
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPKgXH6DiswePLmC723avIASEEg-YcCP7TIxYjJaD_npn24qGePA2STPJZma238zuzLcA14hCjAeKEkqlJlQxTUQYU2I1i3TshkGFO9BPJuHgkd7P2KwCN-tZGGNM3nxmmk7M7_L1Uq3cUVkrjhkCKv5wtxD3KSumtdbllYuv8t7yts1bvaTTda1bLhZytfL9lI38MceR_h4k3yso2keem6tMNtXnBjnjf5e4D_WfiT3vYY1FB1Ax6SHs_iIbrMEo-UDccvGw8IapxQB3PvHuTGYKqYOApj0U8qFcskDve7303bzIhfEciQcqToqu8TpM-71pd0DKpxTIE9Y3GZE6iiRXobTSV5ZapmysMFUTvh9p6zjMfOsjMkmmY6ECLtBPggsWyTDQbRMcQTVdpuYEPO74cnTINDMBFTwSoYhcHUQDGwsW8gbUnFXmrwVZxrw0SAOOC6uvP-Dep6jln_6tcAXbg2kyno-Hk9EZ7DhHFl2y51DN3lbmAnOBTF7mIfAFKqKyLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Myocardial+Infarction+Detection+Based+on+Multi-lead+Ensemble+Neural+Network&rft.au=Wang%2C+H.M.&rft.au=Zhao%2C+W.&rft.au=Jia%2C+D.Y.&rft.au=Hu%2C+J.&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=2614&rft.epage=2617&rft_id=info:doi/10.1109%2FEMBC.2019.8856392&rft.externalDocID=8856392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon