Myocardial Infarction Detection Based on Multi-lead Ensemble Neural Network

Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior myocardial infarction (AMI) and inferior myocardial infa...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2019; pp. 2614 - 2617
Main Authors Wang, H.M., Zhao, W., Jia, D.Y., Hu, J., Li, Z.Q., Yan, C., You, T.Y.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
Subjects
Online AccessGet full text
ISSN1557-170X
1558-4615
DOI10.1109/EMBC.2019.8856392

Cover

More Information
Summary:Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior myocardial infarction (AMI) and inferior myocardial infarction (IMI) from healthy control (HC) respectively. In the study, three kinds of sub-networks and multi-lead ECG signals are combined, which fully explores the information of ECG signals and improves the classification performance. The algorithm is evaluated on the PTB database by 5-fold inter-subject cross-validation and the sensitivity (Se), specificity (Sp) and area under the curve (AUC) of AMI detection are 98.35%, 97.49%, 97.92%; The Se, Sp, and AUC of IMI detection are 93.17%, 92.02%, 92.60%. The proposed method achieves the state of the art results on both tasks and outperforms the baseline methods. Hence, the proposed method is potential for automatic MI diagnosis.
ISSN:1557-170X
1558-4615
DOI:10.1109/EMBC.2019.8856392