Classification of EEG Motor Imagery Tasks Using Convolution Neural Networks
Electroencephalograph (EEG) is a highly nonlinear data and very difficult to be classified. The EEG signal is commonly used in the area of Brain-Computer Interface (BCI). The signal can be used as an operative command for directional movements for a powered wheelchair to assist people with disabilit...
Saved in:
Published in | Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2019; pp. 758 - 761 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1557-170X 1558-4615 |
DOI | 10.1109/EMBC.2019.8857933 |
Cover
Abstract | Electroencephalograph (EEG) is a highly nonlinear data and very difficult to be classified. The EEG signal is commonly used in the area of Brain-Computer Interface (BCI). The signal can be used as an operative command for directional movements for a powered wheelchair to assist people with disability in performing the daily activity.In this paper, we aim to classify Electroencephalograph EEG signals extracted from subjects which had been trained to perform four Motoric Imagery (MI) tasks for two classes. The classification will be processed via a Convolutional Neural Network (CNN) utilising all 22 electrodes based on 10-20 system placement. The EEG datasets will be transformed into scaleogram using Continuous Wavelet Transform (CWT) method.We evaluated two different types of image configuration, i.e. layered and stacked input datasets. Our procedure starts from denoising the EEG signals, employing Bump CWT from 8-32 Hz brain wave. Our CNN architecture is based on the Visual Geometry Group (VGG-16) network. Our results show that layered image dataset yields a high accuracy with an average of 68.33% for two classes classification. |
---|---|
AbstractList | Electroencephalograph (EEG) is a highly nonlinear data and very difficult to be classified. The EEG signal is commonly used in the area of Brain-Computer Interface (BCI). The signal can be used as an operative command for directional movements for a powered wheelchair to assist people with disability in performing the daily activity.In this paper, we aim to classify Electroencephalograph EEG signals extracted from subjects which had been trained to perform four Motoric Imagery (MI) tasks for two classes. The classification will be processed via a Convolutional Neural Network (CNN) utilising all 22 electrodes based on 10-20 system placement. The EEG datasets will be transformed into scaleogram using Continuous Wavelet Transform (CWT) method.We evaluated two different types of image configuration, i.e. layered and stacked input datasets. Our procedure starts from denoising the EEG signals, employing Bump CWT from 8-32 Hz brain wave. Our CNN architecture is based on the Visual Geometry Group (VGG-16) network. Our results show that layered image dataset yields a high accuracy with an average of 68.33% for two classes classification. |
Author | Ling, Sai Ho Chai, Rifai dos Santos Goncalves Lourenco, Andre Makgawinata, Henry Monsivais, Fernando Huerta Lyu, Juan |
Author_xml | – sequence: 1 givenname: Sai Ho surname: Ling fullname: Ling, Sai Ho organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia – sequence: 2 givenname: Henry surname: Makgawinata fullname: Makgawinata, Henry organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia – sequence: 3 givenname: Fernando Huerta surname: Monsivais fullname: Monsivais, Fernando Huerta organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia – sequence: 4 givenname: Andre surname: dos Santos Goncalves Lourenco fullname: dos Santos Goncalves Lourenco, Andre organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia – sequence: 5 givenname: Juan surname: Lyu fullname: Lyu, Juan organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia – sequence: 6 givenname: Rifai surname: Chai fullname: Chai, Rifai organization: Department of Telecommunications, Electrical, Robotics and Biomedical Engineering School of Software, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31946007$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kN9OwjAYxavByB95AGNi-gLDfuu6tpe6TCSC3kDiHSnbN1IZK1kHhrd3AfTqnOT8cpJz-qRTuQoJuQc2AmD6KZ29JKOQgR4pJaTm_IoMtVQguIqBA4hr0gMhVBDFIDonLwOQ7KtL-t5_MxYyJuCWdDnoKGZM9sh7UhrvbWEz01hXUVfQNB3TmWtcTSdbs8b6SOfGbzxdeFutaeKqgyv3J_gD97UpW2l-XL3xd-SmMKXH4UUHZPGazpO3YPo5niTP08CGQjeBDlEWUch1BiZXuRYIK2X4CpGFcc5lJJXRJo9BCoFx1KYQZZnQRheYYUsOyOO5d7dfbTFf7mq7NfVx-beqBR7OgEXE__jyGf8FQg5dGA |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO CGR CUY CVF ECM EIF NPM |
DOI | 10.1109/EMBC.2019.8857933 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781538613115 1538613115 |
EISSN | 1558-4615 |
EndPage | 761 |
ExternalDocumentID | 31946007 8857933 |
Genre | orig-research Journal Article |
GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM CGR CUY CVF ECM EIF IPLJI NPM |
ID | FETCH-LOGICAL-i259t-92e7f4239c1ad8d95e1b8a3bee026d37478a9ad61755e64e1b14cc59a9fece8a3 |
IEDL.DBID | RIE |
ISSN | 1557-170X |
IngestDate | Thu Jan 02 22:59:29 EST 2025 Wed Aug 27 02:41:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i259t-92e7f4239c1ad8d95e1b8a3bee026d37478a9ad61755e64e1b14cc59a9fece8a3 |
PMID | 31946007 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8857933 pubmed_primary_31946007 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) |
PublicationTitleAbbrev | EMBC |
PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020051 ssj0061641 |
Score | 2.2305553 |
Snippet | Electroencephalograph (EEG) is a highly nonlinear data and very difficult to be classified. The EEG signal is commonly used in the area of Brain-Computer... |
SourceID | pubmed ieee |
SourceType | Index Database Publisher |
StartPage | 758 |
SubjectTerms | Algorithms Brain-Computer Interfaces Continuous wavelet transforms Electrodes Electroencephalography Imagery, Psychotherapy Neural Networks, Computer Task analysis Testing Tongue |
Title | Classification of EEG Motor Imagery Tasks Using Convolution Neural Networks |
URI | https://ieeexplore.ieee.org/document/8857933 https://www.ncbi.nlm.nih.gov/pubmed/31946007 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDCYwPGSzlwpNu6Nm16ZeoYoCIOm7TblCauhAYrYh0S_HqctBSEOHBqpTRtZTuynXz-DHCRhphRXDxwhDcQjp8G2pFDN3NCVxuydbIqSzyf3AeTmX875_MGXNa1MIhowWfYM7f2LF_namO2yvpCcDInrwlNMrOyVqtOrox1VaeW7iDqx8nVyAC3jCXYSVX3lF_Ro_Ui4x1Ivr5fgkeWvU2R9tTHL2rG__7gLnS-6_XYQ-2J9qCBq33Y_kE12IY72_3S4IKsKliesTi-ZklOOTe7eTZMFu9sKtfLNbMoAkavfqvMkhkGD_lEFwsZX3dgNo6no4lTNVJwHim7KZxoiGFmmP6UK7XQEUc3FdJLESkD056h0JeR1BTMcI6BT6OurxSPZJShQnryAFqrfIVHwLjmUqgQPVrrfqaElEOtfTcNlCclZrILbSOWxUvJlbGoJNKFw1Ls9QAtfd9w4x__PeEEtoz2SmDsKbSK1w2ekfsv0nOr908WjbAw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKgXf4CKP3vw6ICxdeuukiEIIx4g4Ua69i0xKDMyTPSvt-3mNMSDpy1puzSvX9P31u99D-Am9jFRfnHbYk6bWW7sSYt37MTybanF1hWqjPB8NPb6U_dhRmcVuC1zYRDRkM-wqV_NXb5MxVr_KmsxRhWcnC3YVue-S_NsrTK80vgq7i3tdtAKo7uupm5pLJhhRf2UDf_RnCO9fYi-Z5DTRxbNdRY3xeeGOON_p3gA9Z-MPfJYnkWHUMHlEez9EhuswdDUv9TMILMYJE1IGN6TKFVRNxm8aC2LDzLhq8WKGB4BUZ9-L4BJtIYHf1YPQxpf1WHaCyfdvlWUUrCeVHyTWUEH_URr_QmbSyYDinbMuBMjqhhMOlpEnwdcKneGUvRc1Wq7QtCABwkKVD2PobpMl3gKhErKmfDRUbvdTQTjvCOla8eecDjHhDegps0yf83VMuaFRRpwkpu9bFCb39Xq-Gd_D7iGnf4kGs1Hg_HwHHb1SuY02QuoZm9rvFTOQBZfGQx8AXwxs30 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Classification+of+EEG+Motor+Imagery+Tasks+Using+Convolution+Neural+Networks&rft.au=Ling%2C+Sai+Ho&rft.au=Makgawinata%2C+Henry&rft.au=Monsivais%2C+Fernando+Huerta&rft.au=dos+Santos+Goncalves+Lourenco%2C+Andre&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=758&rft.epage=761&rft_id=info:doi/10.1109%2FEMBC.2019.8857933&rft.externalDocID=8857933 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon |