Classification of EEG Motor Imagery Tasks Using Convolution Neural Networks

Electroencephalograph (EEG) is a highly nonlinear data and very difficult to be classified. The EEG signal is commonly used in the area of Brain-Computer Interface (BCI). The signal can be used as an operative command for directional movements for a powered wheelchair to assist people with disabilit...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2019; pp. 758 - 761
Main Authors Ling, Sai Ho, Makgawinata, Henry, Monsivais, Fernando Huerta, dos Santos Goncalves Lourenco, Andre, Lyu, Juan, Chai, Rifai
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
Subjects
Online AccessGet full text
ISSN1557-170X
1558-4615
DOI10.1109/EMBC.2019.8857933

Cover

Abstract Electroencephalograph (EEG) is a highly nonlinear data and very difficult to be classified. The EEG signal is commonly used in the area of Brain-Computer Interface (BCI). The signal can be used as an operative command for directional movements for a powered wheelchair to assist people with disability in performing the daily activity.In this paper, we aim to classify Electroencephalograph EEG signals extracted from subjects which had been trained to perform four Motoric Imagery (MI) tasks for two classes. The classification will be processed via a Convolutional Neural Network (CNN) utilising all 22 electrodes based on 10-20 system placement. The EEG datasets will be transformed into scaleogram using Continuous Wavelet Transform (CWT) method.We evaluated two different types of image configuration, i.e. layered and stacked input datasets. Our procedure starts from denoising the EEG signals, employing Bump CWT from 8-32 Hz brain wave. Our CNN architecture is based on the Visual Geometry Group (VGG-16) network. Our results show that layered image dataset yields a high accuracy with an average of 68.33% for two classes classification.
AbstractList Electroencephalograph (EEG) is a highly nonlinear data and very difficult to be classified. The EEG signal is commonly used in the area of Brain-Computer Interface (BCI). The signal can be used as an operative command for directional movements for a powered wheelchair to assist people with disability in performing the daily activity.In this paper, we aim to classify Electroencephalograph EEG signals extracted from subjects which had been trained to perform four Motoric Imagery (MI) tasks for two classes. The classification will be processed via a Convolutional Neural Network (CNN) utilising all 22 electrodes based on 10-20 system placement. The EEG datasets will be transformed into scaleogram using Continuous Wavelet Transform (CWT) method.We evaluated two different types of image configuration, i.e. layered and stacked input datasets. Our procedure starts from denoising the EEG signals, employing Bump CWT from 8-32 Hz brain wave. Our CNN architecture is based on the Visual Geometry Group (VGG-16) network. Our results show that layered image dataset yields a high accuracy with an average of 68.33% for two classes classification.
Author Ling, Sai Ho
Chai, Rifai
dos Santos Goncalves Lourenco, Andre
Makgawinata, Henry
Monsivais, Fernando Huerta
Lyu, Juan
Author_xml – sequence: 1
  givenname: Sai Ho
  surname: Ling
  fullname: Ling, Sai Ho
  organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia
– sequence: 2
  givenname: Henry
  surname: Makgawinata
  fullname: Makgawinata, Henry
  organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia
– sequence: 3
  givenname: Fernando Huerta
  surname: Monsivais
  fullname: Monsivais, Fernando Huerta
  organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia
– sequence: 4
  givenname: Andre
  surname: dos Santos Goncalves Lourenco
  fullname: dos Santos Goncalves Lourenco, Andre
  organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia
– sequence: 5
  givenname: Juan
  surname: Lyu
  fullname: Lyu, Juan
  organization: Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia
– sequence: 6
  givenname: Rifai
  surname: Chai
  fullname: Chai, Rifai
  organization: Department of Telecommunications, Electrical, Robotics and Biomedical Engineering School of Software, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31946007$$D View this record in MEDLINE/PubMed
BookMark eNo9kN9OwjAYxavByB95AGNi-gLDfuu6tpe6TCSC3kDiHSnbN1IZK1kHhrd3AfTqnOT8cpJz-qRTuQoJuQc2AmD6KZ29JKOQgR4pJaTm_IoMtVQguIqBA4hr0gMhVBDFIDonLwOQ7KtL-t5_MxYyJuCWdDnoKGZM9sh7UhrvbWEz01hXUVfQNB3TmWtcTSdbs8b6SOfGbzxdeFutaeKqgyv3J_gD97UpW2l-XL3xd-SmMKXH4UUHZPGazpO3YPo5niTP08CGQjeBDlEWUch1BiZXuRYIK2X4CpGFcc5lJJXRJo9BCoFx1KYQZZnQRheYYUsOyOO5d7dfbTFf7mq7NfVx-beqBR7OgEXE__jyGf8FQg5dGA
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC.2019.8857933
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538613115
1538613115
EISSN 1558-4615
EndPage 761
ExternalDocumentID 31946007
8857933
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i259t-92e7f4239c1ad8d95e1b8a3bee026d37478a9ad61755e64e1b14cc59a9fece8a3
IEDL.DBID RIE
ISSN 1557-170X
IngestDate Thu Jan 02 22:59:29 EST 2025
Wed Aug 27 02:41:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i259t-92e7f4239c1ad8d95e1b8a3bee026d37478a9ad61755e64e1b14cc59a9fece8a3
PMID 31946007
PageCount 4
ParticipantIDs ieee_primary_8857933
pubmed_primary_31946007
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0061641
Score 2.2305553
Snippet Electroencephalograph (EEG) is a highly nonlinear data and very difficult to be classified. The EEG signal is commonly used in the area of Brain-Computer...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 758
SubjectTerms Algorithms
Brain-Computer Interfaces
Continuous wavelet transforms
Electrodes
Electroencephalography
Imagery, Psychotherapy
Neural Networks, Computer
Task analysis
Testing
Tongue
Title Classification of EEG Motor Imagery Tasks Using Convolution Neural Networks
URI https://ieeexplore.ieee.org/document/8857933
https://www.ncbi.nlm.nih.gov/pubmed/31946007
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDCYwPGSzlwpNu6Nm16ZeoYoCIOm7TblCauhAYrYh0S_HqctBSEOHBqpTRtZTuynXz-DHCRhphRXDxwhDcQjp8G2pFDN3NCVxuydbIqSzyf3AeTmX875_MGXNa1MIhowWfYM7f2LF_namO2yvpCcDInrwlNMrOyVqtOrox1VaeW7iDqx8nVyAC3jCXYSVX3lF_Ro_Ui4x1Ivr5fgkeWvU2R9tTHL2rG__7gLnS-6_XYQ-2J9qCBq33Y_kE12IY72_3S4IKsKliesTi-ZklOOTe7eTZMFu9sKtfLNbMoAkavfqvMkhkGD_lEFwsZX3dgNo6no4lTNVJwHim7KZxoiGFmmP6UK7XQEUc3FdJLESkD056h0JeR1BTMcI6BT6OurxSPZJShQnryAFqrfIVHwLjmUqgQPVrrfqaElEOtfTcNlCclZrILbSOWxUvJlbGoJNKFw1Ls9QAtfd9w4x__PeEEtoz2SmDsKbSK1w2ekfsv0nOr908WjbAw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKgXf4CKP3vw6ICxdeuukiEIIx4g4Ua69i0xKDMyTPSvt-3mNMSDpy1puzSvX9P31u99D-Am9jFRfnHbYk6bWW7sSYt37MTybanF1hWqjPB8NPb6U_dhRmcVuC1zYRDRkM-wqV_NXb5MxVr_KmsxRhWcnC3YVue-S_NsrTK80vgq7i3tdtAKo7uupm5pLJhhRf2UDf_RnCO9fYi-Z5DTRxbNdRY3xeeGOON_p3gA9Z-MPfJYnkWHUMHlEez9EhuswdDUv9TMILMYJE1IGN6TKFVRNxm8aC2LDzLhq8WKGB4BUZ9-L4BJtIYHf1YPQxpf1WHaCyfdvlWUUrCeVHyTWUEH_URr_QmbSyYDinbMuBMjqhhMOlpEnwdcKneGUvRc1Wq7QtCABwkKVD2PobpMl3gKhErKmfDRUbvdTQTjvCOla8eecDjHhDegps0yf83VMuaFRRpwkpu9bFCb39Xq-Gd_D7iGnf4kGs1Hg_HwHHb1SuY02QuoZm9rvFTOQBZfGQx8AXwxs30
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Classification+of+EEG+Motor+Imagery+Tasks+Using+Convolution+Neural+Networks&rft.au=Ling%2C+Sai+Ho&rft.au=Makgawinata%2C+Henry&rft.au=Monsivais%2C+Fernando+Huerta&rft.au=dos+Santos+Goncalves+Lourenco%2C+Andre&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=758&rft.epage=761&rft_id=info:doi/10.1109%2FEMBC.2019.8857933&rft.externalDocID=8857933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon