Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection

Parkinson's Disease (PD) is a neurodegenerative disorder that manifests through slowly progressing symptoms, such as tremor, voice degradation and bradykinesia. Automated detection of such symptoms has recently received much attention by the research community, owing to the clinical benefits as...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2019; pp. 6188 - 6191
Main Authors Papadopoulos, Alexandros, Kyritsis, Konstantinos, Bostanjopoulou, Sevasti, Klingelhoefer, Lisa, Chaudhuri, Ray K., Delopoulos, Anastasios
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
Subjects
Online AccessGet full text
ISSN1557-170X
1558-4615
DOI10.1109/EMBC.2019.8856314

Cover

Loading…
Abstract Parkinson's Disease (PD) is a neurodegenerative disorder that manifests through slowly progressing symptoms, such as tremor, voice degradation and bradykinesia. Automated detection of such symptoms has recently received much attention by the research community, owing to the clinical benefits associated with the early diagnosis of the disease. Unfortunately, most of the approaches proposed so far, operate under a strictly laboratory setting, thus limiting their potential applicability in real world conditions. In this work, we present a method for automatically detecting tremorous episodes related to PD, based on acceleration signals. We propose to address the problem at hand, as a case of Multiple-Instance Learning, wherein a subject is represented as an unordered bag of signal segments and a single, expert-provided, ground-truth. We employ a deep learning approach that combines feature learning and a learnable pooling stage and is trainable end-to-end. Results on a newly introduced dataset of accelerometer signals collected in-the-wild confirm the validity of the proposed approach.
AbstractList Parkinson's Disease (PD) is a neurodegenerative disorder that manifests through slowly progressing symptoms, such as tremor, voice degradation and bradykinesia. Automated detection of such symptoms has recently received much attention by the research community, owing to the clinical benefits associated with the early diagnosis of the disease. Unfortunately, most of the approaches proposed so far, operate under a strictly laboratory setting, thus limiting their potential applicability in real world conditions. In this work, we present a method for automatically detecting tremorous episodes related to PD, based on acceleration signals. We propose to address the problem at hand, as a case of Multiple-Instance Learning, wherein a subject is represented as an unordered bag of signal segments and a single, expert-provided, ground-truth. We employ a deep learning approach that combines feature learning and a learnable pooling stage and is trainable end-to-end. Results on a newly introduced dataset of accelerometer signals collected in-the-wild confirm the validity of the proposed approach.
Author Delopoulos, Anastasios
Papadopoulos, Alexandros
Bostanjopoulou, Sevasti
Klingelhoefer, Lisa
Kyritsis, Konstantinos
Chaudhuri, Ray K.
Author_xml – sequence: 1
  givenname: Alexandros
  surname: Papadopoulos
  fullname: Papadopoulos, Alexandros
  organization: Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece
– sequence: 2
  givenname: Konstantinos
  surname: Kyritsis
  fullname: Kyritsis, Konstantinos
  organization: Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece
– sequence: 3
  givenname: Sevasti
  surname: Bostanjopoulou
  fullname: Bostanjopoulou, Sevasti
  organization: Department of Neurology, Hippokration Hospital, Thessaloniki, Greece
– sequence: 4
  givenname: Lisa
  surname: Klingelhoefer
  fullname: Klingelhoefer, Lisa
  organization: Department of Neurology, Technical University of Dresden, Dresden, Germany
– sequence: 5
  givenname: Ray K.
  surname: Chaudhuri
  fullname: Chaudhuri, Ray K.
  organization: International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, London, UK
– sequence: 6
  givenname: Anastasios
  surname: Delopoulos
  fullname: Delopoulos, Anastasios
  organization: Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31947256$$D View this record in MEDLINE/PubMed
BookMark eNo9kNtOAjEYhKvByEEewJiYfYFi_-35UhGFBKIXGL0jpf1Xq0uX7C4Xvr1E0KuZ5JtMMtMnnVQlJOQS2AiA2ZvJ4m48yhnYkTFScRAnZGi1AcmNAg4gT0kPpDRUKJCdX68paPbWJf2m-WQsZ0zCOelysELnUvXIdLEr27gtkc5S07rkMZujq1NM71lR1dks0eUH0tdYhuzZ1V8xNVWKLmXLGjd7fo8t-jZW6YKcFa5scHjUAXl5mCzHUzp_epyNb-c05tK2VCvPEDBY1EGIHLUPocgt82qPjZW45k6BFyKsObeqgEI7ybUNjhkXpOcDcn3o3e7WGwyrbR03rv5e_U3aB64OgYiI__h4GP8BCd1bzg
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
DOI 10.1109/EMBC.2019.8856314
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538613115
1538613115
EISSN 1558-4615
EndPage 6191
ExternalDocumentID 31947256
8856314
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
IPLJI
NPM
ID FETCH-LOGICAL-i259t-76c0e1ed9e7d442e7cddf290c6259895eb3a61c44db3396f1f7a5379da08ad5c3
IEDL.DBID RIE
ISSN 1557-170X
IngestDate Thu Jan 02 23:00:25 EST 2025
Wed Aug 27 02:43:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i259t-76c0e1ed9e7d442e7cddf290c6259895eb3a61c44db3396f1f7a5379da08ad5c3
PMID 31947256
PageCount 4
ParticipantIDs ieee_primary_8856314
pubmed_primary_31947256
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0061641
Score 1.9090549
Snippet Parkinson's Disease (PD) is a neurodegenerative disorder that manifests through slowly progressing symptoms, such as tremor, voice degradation and...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 6188
SubjectTerms Accelerometers
Diseases
Mathematical model
Sensors
Smart phones
Training
Title Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection
URI https://ieeexplore.ieee.org/document/8856314
https://www.ncbi.nlm.nih.gov/pubmed/31947256
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJ734ABVf6cGjhZZ9dPcqQsCkxgMk3Ej3UWNMCiHl4q93dlurIR68NWknbWZnM9_X_WYG4F4gitYJbqRhTpCgWOQpSsgo1IoaRlzLL1_1nr7w6YI-L9myBQ9NLYy11ovPbN9d-rN8s9Y796tsIATjxE2tPkDiVtVqNeTKRVd9ahlHcjBOH0dOuOUiwRvV01P20KPPIpNjSL_fX4lHPvq7UvX1515rxv9-4Al0f-r1gtcmE51CyxZncPSr1WAHpmmtHAxnHhCiRd1a9S1A3BrMihAjxslnTeAqoX1RGIZOMN86LW7wZEsv2iq6sJiM56NpWE9RCN-R2pRhwnVkY2ukTQylQ5toY_KhjLRjPkIyZNMZjzWlRhEieR7nScZIIk0WicwwTc6hXawLewkBFVJlhueGcUUlzQQ-jPDL5JzmisSsBx3nk9WmapSxqt3Rg4vK580N3Pc0QbB19bfBNRy6patUsTfQLrc7e4u5v1R3ftG_AB38rgo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMAALjxYozwyMpE3qR-yV0iqFpmJopW5VYjsIIaWoShd-PWcnFFQxsEVyTrIuZ933xd_dAdwJRNEqwoPUywkSFIM8JRMy8FVGNSO25Zerek8mPJ7RpzmbN-B-UwtjjHHiM9Oxj-4uXy_V2v4q6wrBOLFTq3cx77Owqtba0CsbX_W9ZRjI7iB56Fvplo0FZ1bPT9nCjy6PDA8h-d5BJR9576zLrKM-t5oz_neLR9D6qdjzXja56BgapjiBg1_NBpsQJ7V20B85SIgWdXPVVw-RqzcqfIwZK6DVnq2FdmVhGDzedGXVuN6jKZ1sq2jBbDiY9mO_nqPgvyG5Kf2Iq8CERksTaUp7JlJa5z0ZKMt9hGTIp1MeKkp1RojkeZhHKSOR1GkgUs0UOYWdYlmYc_CokFmqea4Zz6ikqcCXEYDpnNM8IyFrQ9P6ZPFRtcpY1O5ow1nl880CnnwaIdy6-NvgFvbiaTJejEeT50vYt5-x0shewU65WptrRAJlduMC4AtgWLFT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Multiple-Instance+Learning+for+In-The-Wild+Parkinsonian+Tremor+Detection&rft.au=Papadopoulos%2C+Alexandros&rft.au=Kyritsis%2C+Konstantinos&rft.au=Bostanjopoulou%2C+Sevasti&rft.au=Klingelhoefer%2C+Lisa&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=6188&rft.epage=6191&rft_id=info:doi/10.1109%2FEMBC.2019.8856314&rft.externalDocID=8856314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon