Adaptive Group Testing with Mismatched Models

Accurate detection of infected individuals is one of the critical steps in stopping any pandemic. When the underlying infection rate of the disease is low, testing people in groups, instead of testing each individual in the population, can be more efficient. In this work, we consider noisy adaptive...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 4533 - 4537
Main Authors Fan, Mingzhou, Yoon, Byung-Jun, Alexander, Francis J., Dougherty, Edward R., Qian, Xiaoning
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2022
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP43922.2022.9747665

Cover

Abstract Accurate detection of infected individuals is one of the critical steps in stopping any pandemic. When the underlying infection rate of the disease is low, testing people in groups, instead of testing each individual in the population, can be more efficient. In this work, we consider noisy adaptive group testing design with specific test sensitivity and specificity that select the optimal group given previous test results based on pre-selected utility function. As in prior studies on group testing, we model this problem as a sequential Bayesian Optimal Experimental Design (BOED) to adaptively design the groups for each test. We analyze the required number of group tests when using the updated posterior on the infection status and the corresponding Mutual Information (MI) as our utility function for selecting new groups. More importantly, we study how the potential bias on the ground-truth noise of group tests may affect the group testing sample complexity.
AbstractList Accurate detection of infected individuals is one of the critical steps in stopping any pandemic. When the underlying infection rate of the disease is low, testing people in groups, instead of testing each individual in the population, can be more efficient. In this work, we consider noisy adaptive group testing design with specific test sensitivity and specificity that select the optimal group given previous test results based on pre-selected utility function. As in prior studies on group testing, we model this problem as a sequential Bayesian Optimal Experimental Design (BOED) to adaptively design the groups for each test. We analyze the required number of group tests when using the updated posterior on the infection status and the corresponding Mutual Information (MI) as our utility function for selecting new groups. More importantly, we study how the potential bias on the ground-truth noise of group tests may affect the group testing sample complexity.
Author Yoon, Byung-Jun
Alexander, Francis J.
Dougherty, Edward R.
Qian, Xiaoning
Fan, Mingzhou
Author_xml – sequence: 1
  givenname: Mingzhou
  surname: Fan
  fullname: Fan, Mingzhou
  organization: Texas A&M University,Department of Electrical & Computer Engineering,College Station,TX
– sequence: 2
  givenname: Byung-Jun
  surname: Yoon
  fullname: Yoon, Byung-Jun
  organization: Texas A&M University,Department of Electrical & Computer Engineering,College Station,TX
– sequence: 3
  givenname: Francis J.
  surname: Alexander
  fullname: Alexander, Francis J.
  organization: Computational Science Initiative,Brookhaven National Laboratory,Upton,NY
– sequence: 4
  givenname: Edward R.
  surname: Dougherty
  fullname: Dougherty, Edward R.
  organization: Texas A&M University,Department of Electrical & Computer Engineering,College Station,TX
– sequence: 5
  givenname: Xiaoning
  surname: Qian
  fullname: Qian, Xiaoning
  organization: Texas A&M University,Department of Electrical & Computer Engineering,College Station,TX
BookMark eNotT81KAzEYjKJgt_oEXvICqfnbJN-xFG2FFoVW8Fay-bGRdnfZrIpvb8DCMMPMYZip0FXbtQEhzOiMMQoPz4v5dvsqBXA-47QQaKmVqi9QxYpIWqAu0YQLDYQBfb9BVc6flFKjpZkgMve2H9N3wMuh--rxLuQxtR_4J40HvEn5ZEd3CB5vOh-O-RZdR3vM4e6sU_T29LhbrMj6ZVmWrEnitRhJw70BJgGc1Jw3IhZnHIteGOcYNMx75q0ytQTpaldSrWy0ljY1dxGCmKL7_94UQtj3QzrZ4Xd_vib-AHgbRaA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9747665
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 4537
ExternalDocumentID 9747665
Genre orig-research
GrantInformation_xml – fundername: Office of Science
  funderid: 10.13039/100006132
– fundername: Advanced Scientific Computing Research
  funderid: 10.13039/100006192
– fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i253t-b2d891499c4722b3f8918c1fd38cc19b1dd1da685494c5c38c76afaa0b52cf9e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i253t-b2d891499c4722b3f8918c1fd38cc19b1dd1da685494c5c38c76afaa0b52cf9e3
OpenAccessLink https://www.osti.gov/biblio/1924192
PageCount 5
ParticipantIDs ieee_primary_9747665
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.1833453
Snippet Accurate detection of infected individuals is one of the critical steps in stopping any pandemic. When the underlying infection rate of the disease is low,...
SourceID ieee
SourceType Publisher
StartPage 4533
SubjectTerms Adaptation models
Bayesian optimal experimental design (BOED)
Entropy
Group testing
mismatched models
Performance evaluation
Sensitivity and specificity
Signal processing
Sociology
Statistics
Title Adaptive Group Testing with Mismatched Models
URI https://ieeexplore.ieee.org/document/9747665
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da8IwED_UJ_eyTR37Jg97XNUmaZo-ikzcwCGo4Jvkq0M2qsz6sr9-l1bdB3tYKaUNhJS7kLtc7vc7gDtJWdoVaRpwR23ATRIHmoY6wOnBmDLKcemxw6NnMZzxp3k0r8D9AQvjnCuSz1zbvxZn-XZltj5U1vG-rxBRFao4zUqs1mHVlTGX-0ydbtJ57PcmkzFaW-rRVvjY9f1RRKWwIYNjGO1HL1NHXtvbXLfNxy9ixv_-3gm0vtB6ZHywQ6dQcVkDjr4RDTag7n3KkpK5CUHPqrVf5UgReCJTT7SRvRAfkiWj5QZ9WNSkJb5M2tumBbPBw7Q_DHZVE4IlyjdHUVuZ4L4nMZ4HUrMUv6QJU8ukMWGiQ2tDq4TEjSE3kcHWWKhUqa6OqEkTx86glq0ydw6EOY4Xsy50McdbGssMY0aFVDjsdgFNL4XFuiTGWOwEcPl38xXUvSb80Ttl11DL37fuBi16rm8LVX4CXc-gZQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8gPqgvKmD8tg8-OmBr13WPhEhAGSEBEt5I13aGaAaR8eJf73UD_IgPLsvSNmm23C39Xa93vwO4Fx5NmjxJHGY87TAVBk7subGDvwelUknDhM0djga8O2FPU39agoddLowxJg8-M3XbzM_y9UKtrausYW1fzv092EfcZ36RrbVbd0XAxDZWpxk2eu3WaDREvPVsvhU-NrN_lFHJUaRzDNH2_UXwyGt9ncV19fGLmvG_H3gCta98PTLcIdEplExagaNvVIMVOLRWZUHKXAWnpeXSrnMkdz2RsaXaSF-IdcqSaL5CKxZ1qYktlPa2qsGk8zhud51N3QRnjhLOUNhahLjzCZVlgoxpgj2h3ERToZQbxq7WrpZc4NaQKV_haMBlImUz9j2VhIaeQTldpOYcCDUML6qNawKGt1CaKkqVdD1ucNoFVK0UZsuCGmO2EcDl38N3cNAdR_1Zvzd4voJDqxV7EO_Rayhn72tzg_iexbe5Wj8B9nujsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Adaptive+Group+Testing+with+Mismatched+Models&rft.au=Fan%2C+Mingzhou&rft.au=Yoon%2C+Byung-Jun&rft.au=Alexander%2C+Francis+J.&rft.au=Dougherty%2C+Edward+R.&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=4533&rft.epage=4537&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747665&rft.externalDocID=9747665