A Hybrid Active-Passive Approach to Imbalanced Nonstationary Data Stream Classification

In real-world applications, the process generating the data might suffer from nonstationary effects (e.g., due to seasonality, faults affecting sensors or actuators, and changes in the users' behaviour). These changes, often called concept drift, might induce severe (potentially catastrophic) i...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 1021 - 1027
Main Authors Malialis, Kleanthis, Roveri, Manuel, Alippi, Cesare, Panayiotou, Christos G., Polycarpou, Marios M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2022
Subjects
Online AccessGet full text
DOI10.1109/SSCI51031.2022.10022140

Cover

Abstract In real-world applications, the process generating the data might suffer from nonstationary effects (e.g., due to seasonality, faults affecting sensors or actuators, and changes in the users' behaviour). These changes, often called concept drift, might induce severe (potentially catastrophic) impacts on trained learning models that become obsolete over time, and inadequate to solve the task at hand. Learning in presence of concept drift aims at designing machine and deep learning models that are able to track and adapt to concept drift. Typically, techniques to handle concept drift are either active or passive, and traditionally, these have been considered to be mutually exclusive. Active techniques use an explicit drift detection mechanism, and re-train the learning algorithm when concept drift is detected. Passive techniques use an implicit method to deal with drift, and continually update the model using incremental learning. Differently from what present in the literature, we propose a hybrid alternative which merges the two approaches, hence, leveraging on their advantages. The proposed method called Hybrid-Adaptive REBAlancing (HAREBA) significantly outperforms strong baselines and state-of-the-art methods in terms of learning quality and speed; we experiment how it is effective under severe class imbalance levels too.
AbstractList In real-world applications, the process generating the data might suffer from nonstationary effects (e.g., due to seasonality, faults affecting sensors or actuators, and changes in the users' behaviour). These changes, often called concept drift, might induce severe (potentially catastrophic) impacts on trained learning models that become obsolete over time, and inadequate to solve the task at hand. Learning in presence of concept drift aims at designing machine and deep learning models that are able to track and adapt to concept drift. Typically, techniques to handle concept drift are either active or passive, and traditionally, these have been considered to be mutually exclusive. Active techniques use an explicit drift detection mechanism, and re-train the learning algorithm when concept drift is detected. Passive techniques use an implicit method to deal with drift, and continually update the model using incremental learning. Differently from what present in the literature, we propose a hybrid alternative which merges the two approaches, hence, leveraging on their advantages. The proposed method called Hybrid-Adaptive REBAlancing (HAREBA) significantly outperforms strong baselines and state-of-the-art methods in terms of learning quality and speed; we experiment how it is effective under severe class imbalance levels too.
Author Roveri, Manuel
Polycarpou, Marios M.
Alippi, Cesare
Malialis, Kleanthis
Panayiotou, Christos G.
Author_xml – sequence: 1
  givenname: Kleanthis
  orcidid: 0000-0003-3432-7434
  surname: Malialis
  fullname: Malialis, Kleanthis
  email: malialis.kleanthis@ucy.ac.cy
  organization: KIOS Research and Innovation Center of Excellence, University of Cyprus,Nicosia,Cyprus
– sequence: 2
  givenname: Manuel
  orcidid: 0000-0001-7828-7687
  surname: Roveri
  fullname: Roveri, Manuel
  email: manuel.roveri@polimi.it
  organization: Politecnico di Milano,Dipartimento di Elettronica, Informazione e Bioingegneria,Milan,Italy
– sequence: 3
  givenname: Cesare
  orcidid: 0000-0003-3819-0025
  surname: Alippi
  fullname: Alippi, Cesare
  email: cesare.alippi@polimi.it
  organization: Politecnico di Milano,Dipartimento di Elettronica, Informazione e Bioingegneria,Milan,Italy
– sequence: 4
  givenname: Christos G.
  orcidid: 0000-0002-6476-9025
  surname: Panayiotou
  fullname: Panayiotou, Christos G.
  email: christosp@ucy.ac.cy
  organization: KIOS Research and Innovation Center of Excellence, University of Cyprus,Nicosia,Cyprus
– sequence: 5
  givenname: Marios M.
  orcidid: 0000-0001-6495-9171
  surname: Polycarpou
  fullname: Polycarpou, Marios M.
  email: mpolycar@ucy.ac.cy
  organization: KIOS Research and Innovation Center of Excellence, University of Cyprus,Nicosia,Cyprus
BookMark eNo1T8tKxDAUjaALHecPBPMDrUnTvJalPqYwqNABl8NteoOBvmiDMH9v1XFzzuI8OOeGXA7jgITcc5ZyzuxDXZeV5EzwNGNZlnK2Is_ZBdlabbhSMjdaGXtNPgq6OzVzaGnhYvjC5B2WZWVaTNM8gvukcaRV30AHg8OWvo7DEiGGcYD5RB8hAq3jjNDTsvtJ-uB-1Vty5aFbcHvmDTk8Px3KXbJ_e6nKYp-ETIqYGOVzlWVagmNeS97anCE6y4XQzjLmtLCeu0YxJRBAo-SNEcJ4plaPERty91cbEPE4zaFfZx3_74pvo41PAA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI51031.2022.10022140
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665487689
1665487682
EndPage 1027
ExternalDocumentID 10022140
Genre orig-research
GrantInformation_xml – fundername: European Research Council
  grantid: 951424
  funderid: 10.13039/501100000781
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i253t-86f462275ac0f751d940eec91337c900c739f1cb6063eaa7e51b8338f0691383
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i253t-86f462275ac0f751d940eec91337c900c739f1cb6063eaa7e51b8338f0691383
ORCID 0000-0003-3432-7434
0000-0003-3819-0025
0000-0001-7828-7687
0000-0002-6476-9025
0000-0001-6495-9171
OpenAccessLink https://zenodo.org/record/7659946
PageCount 7
ParticipantIDs ieee_primary_10022140
PublicationCentury 2000
PublicationDate 2022-Dec.-4
PublicationDateYYYYMMDD 2022-12-04
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2022 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8869339
Snippet In real-world applications, the process generating the data might suffer from nonstationary effects (e.g., due to seasonality, faults affecting sensors or...
SourceID ieee
SourceType Publisher
StartPage 1021
SubjectTerms Actuators
Adaptation models
class imbalance
Computational intelligence
concept drift
Data mining
data streams
Deep learning
incremental learning
nonstationary environments
Sensors
Task analysis
Title A Hybrid Active-Passive Approach to Imbalanced Nonstationary Data Stream Classification
URI https://ieeexplore.ieee.org/document/10022140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qVvxNDl7bpWnTtMcxHZtgGWzibiNJExDZJqM9zL_e97JOURC8tCUNNOS1fe9Lvu89Qu50ZbXTwoVSwCGNuQ61yuBzh1GzXKHHR3HyU5mNntPHuZi3YnWvhbHWevKZjfDS7-VXa9PgUlkP04VyQAQd0oH3bCfWajlbMSt60-lgjAniEPZxHu17_6ib4t3G8IiU-wfu2CJvUVPryHz8ysX47xEdk-BboUcnX77nhBzY1Sl56dPRFhVYtO__YuEEImM4036bOJzWazpeamQzGlvR0seGfjFws6X3qlYUN6nVkvpSmUgi8ncDMhs-zAajsC2cEL5ykdRhnrk041wKZZiTIq6KlFlrCsCj0hSMGZkULjYawAvYREkrYp0DVnUsgz55cka6q_XKnhNaZSyBCAcsCrjJSqkEthipc8dZauILEuCkLN53qTEW-_m4_KP9ihyibTwfJL0m3XrT2Bvw6rW-9db8BC2moqs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_DaLk2Tpj2O6eh0K4NN3G0kaQIi22R0h_nX-5J1ioLgpS1poCGP9L0v-b73ELpTpVFWcRsIDhcWURUomcByh1GTVDqP78TJgyLJn9njhE9qsbrXwhhjPPnMhO7Rn-WXC71yW2Utly6UAiLYRXvg-BnfyLVq1lZEstZo1Om5FHEO-FEabvv_qJziHUf3EBXbT274Im_hqlKh_viVjfHfYzpCzW-NHh5-eZ9jtGPmJ-iljfO102Dhtv-PBUOIjeGO23XqcFwtcG-mHJ9RmxIXPjr024HLNb6XlcTumFrOsC-W6WhE_m0TjbsP404e1KUTglfK4ypIE8sSSgWXmljBozJjxBidASIVOiNEizizkVYAX8AqUhgeqRTQqiUJ9EnjU9SYL-bmDOEyITHEOGBTQE5GCMldixYqtZQwHZ2jppuU6fsmOcZ0Ox8Xf7Tfov18POhP-73i6RIdODt5dgi7Qo1quTLX4OMrdeMt-wnkE6X4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=A+Hybrid+Active-Passive+Approach+to+Imbalanced+Nonstationary+Data+Stream+Classification&rft.au=Malialis%2C+Kleanthis&rft.au=Roveri%2C+Manuel&rft.au=Alippi%2C+Cesare&rft.au=Panayiotou%2C+Christos+G.&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=1021&rft.epage=1027&rft_id=info:doi/10.1109%2FSSCI51031.2022.10022140&rft.externalDocID=10022140