Simheuristics: An Introductory Tutorial

Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex systems in which stochastic uncertainty is present. When the goal is to optimize the performance of these stochastic systems, simulation by itself...

Full description

Saved in:
Bibliographic Details
Published inProceedings - Winter Simulation Conference pp. 1325 - 1339
Main Authors Juan, Angel A., Li, Yuda, Ammouriova, Majsa, Panadero, Javier, Faulin, Javier
Format Conference Proceeding
LanguageEnglish
Published IEEE 11.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex systems in which stochastic uncertainty is present. When the goal is to optimize the performance of these stochastic systems, simulation by itself is not enough and it needs to be hybridized with optimization methods. Since many real-life optimization problems in the aforementioned industries are NP-hard and large scale, metaheuristic optimization algorithms are required. The simheuristics concept refers to the hybridization of simulation methods and metaheuristic algorithms. This paper provides an introductory tutorial to the concept of simheuristics, showing how it has been successfully employed in solving stochastic optimization problems in many application fields, from production logistics and transportation to telecommunication and insurance. Current research trends in the area of simheuristics, such as their combination with fuzzy logic techniques and machine learning methods, are also discussed.
AbstractList Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex systems in which stochastic uncertainty is present. When the goal is to optimize the performance of these stochastic systems, simulation by itself is not enough and it needs to be hybridized with optimization methods. Since many real-life optimization problems in the aforementioned industries are NP-hard and large scale, metaheuristic optimization algorithms are required. The simheuristics concept refers to the hybridization of simulation methods and metaheuristic algorithms. This paper provides an introductory tutorial to the concept of simheuristics, showing how it has been successfully employed in solving stochastic optimization problems in many application fields, from production logistics and transportation to telecommunication and insurance. Current research trends in the area of simheuristics, such as their combination with fuzzy logic techniques and machine learning methods, are also discussed.
Author Li, Yuda
Juan, Angel A.
Panadero, Javier
Ammouriova, Majsa
Faulin, Javier
Author_xml – sequence: 1
  givenname: Angel A.
  surname: Juan
  fullname: Juan, Angel A.
  email: ajuanp@upv.es
  organization: Universitat Politècnica de València,Dept. of Applied Statistics and Operations Research,Alcoy,SPAIN,03801
– sequence: 2
  givenname: Yuda
  surname: Li
  fullname: Li, Yuda
  email: yli1@uoc.edu
  organization: Universitat Oberta de Catalunya,Dept. of Computer Science,Barcelona,SPAIN,08018
– sequence: 3
  givenname: Majsa
  surname: Ammouriova
  fullname: Ammouriova, Majsa
  email: mammouriova@uoc.edu
  organization: Universitat Oberta de Catalunya,Dept. of Computer Science,Barcelona,SPAIN,08018
– sequence: 4
  givenname: Javier
  surname: Panadero
  fullname: Panadero, Javier
  email: jpanaderom@uoc.edu
  organization: Universitat Oberta de Catalunya,Dept. of Computer Science,Barcelona,SPAIN,08018
– sequence: 5
  givenname: Javier
  surname: Faulin
  fullname: Faulin, Javier
  email: javier.faulin@unavarra.es
  organization: Computer Science and Mathematics Public University of Navarre,Institute of Smart Cities Dept. of Statistics,Pamplona,SPAIN,31006
BookMark eNo1j8lKA0EUAFtRMBP9A5G5eZqx3-t-vXgLg0sg4CERj6G3YEsyI7Mc8vcG1FNdioIq2EXbtYmxO-A1ALcPH-uGtABZI0esgXMgAeaMFaAUSa0UiHM2AyJTScHpihXD8HWyDAHO2P06Hz7T1OdhzGF4LBdtuWzHvotTGLv-WG6mE7LbX7PLndsP6eaPc_b-_LRpXqvV28uyWayqjIRjZVBa5bUzIIWPUQcdUNnoyEivIwqnnQ7OkPVobfTOOc65DSrttCT0WszZ7W83p5S2330-uP64_b8SP0OqQtg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/WSC57314.2022.10015318
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1665476613
9781665476614
EISSN 1558-4305
EndPage 1339
ExternalDocumentID 10015318
Genre orig-research
GrantInformation_xml – fundername: Spanish Ministry of Science
  grantid: PID2019-111100RB-C21-C22 /AEI/10.13039/501100011033,RED2018-102642-T
  funderid: 10.13039/501100006280
GroupedDBID 123
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
WH7
~02
ID FETCH-LOGICAL-i252t-82496b7a8143bdd7c7c269da584b7d23a7a7ca859b299dbaaa0009c6ef7452b73
IEDL.DBID RIE
IngestDate Wed Aug 27 02:18:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i252t-82496b7a8143bdd7c7c269da584b7d23a7a7ca859b299dbaaa0009c6ef7452b73
OpenAccessLink http://hdl.handle.net/2117/384911
PageCount 15
ParticipantIDs ieee_primary_10015318
PublicationCentury 2000
PublicationDate 2022-Dec.-11
PublicationDateYYYYMMDD 2022-12-11
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-11
  day: 11
PublicationDecade 2020
PublicationTitle Proceedings - Winter Simulation Conference
PublicationTitleAbbrev WSC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0018512
Score 2.2325912
Snippet Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex...
SourceID ieee
SourceType Publisher
StartPage 1325
SubjectTerms Machine learning
Manufacturing
Metaheuristics
Stochastic processes
Transportation
Tutorials
Uncertainty
Title Simheuristics: An Introductory Tutorial
URI https://ieeexplore.ieee.org/document/10015318
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3qp1opvchA8JW022UziTYqlChahLfZW9lUsYlJKctBf706a1AcI3paFZZfZWebb3fm-AbjiiSbUyl3NpHDDmEeuDAPbKsWVMFkkMZGTH0fRcBo-zPisIquXXBhjTJl8Zjxqln_5OlMFPZV1SS_I-kzcgIa9uW3IWtsvAwsdWEUB9ntJ93nc5xj49GzCmFeP_FFDpQwhgxaM6sk3mSOvXpFLT3380mX89-r2ofPF1nOetnHoAHZM2oZWXa7BqU5vG_a-aQ8ewvV4-fZiikqo-ca5TZ17ylon_dds_e5MSNzAOmcHpoO7SX_oVlUT3CXjLHdje6GKJIrYIiGpNSpULEq0sEhDomaBQIFKxDyRNhJpKYQgnKUis8CQM4nBETTTLDXH4KBQFj0wrYXAUPk9aUwgQ2tVJJ075Z9Ah8wwX22EMea1BU7_6D-DXdoNygbx_XNo5uvCXNiYnsvLci8_AQEpnxk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20HtRLtVb8NgfBU9LuJptNvEmxtNoWoS32VvarWMRUSnLQX-9OmtQPELwtgbBhdpb3sjvvDcAVizWyVuZqKoUbRCx0ZeDbUW6uxONZHKE4uT8IO-PgfsImhVg918IYY_LiM-PhML_L1wuV4VFZA_2CbM5Em7BlgZ-RlVxrfWlgyQMtRMCkGTeehi3GfYIHJ5R65bs_uqjkINKuwqCcflU78uJlqfTUxy9nxn9_3x7Uv_R6zuMaifZhwyQ1qJYNG5xi_9Zg95v74AFcD-evzyYrrJpvnNvE6WLdOjrALpbvzgjtDWx61mHcvhu1Om7RN8GdU0ZTN7K_VKHkIrJcSGrNFVc0jLWwXENyTX3BBVciYrG0WKSlEAKZlgrNjAeMSu4fQiVZJOYIHC6U5Q9UayF4oEhTGuPLwEaVo9OdIsdQxzBM31bWGNMyAid_PL-E7c6o35v2uoOHU9jBlcHaEELOoJIuM3NuET6VF_m6fgKB76Ji
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+Winter+Simulation+Conference&rft.atitle=Simheuristics%3A+An+Introductory+Tutorial&rft.au=Juan%2C+Angel+A.&rft.au=Li%2C+Yuda&rft.au=Ammouriova%2C+Majsa&rft.au=Panadero%2C+Javier&rft.date=2022-12-11&rft.pub=IEEE&rft.eissn=1558-4305&rft.spage=1325&rft.epage=1339&rft_id=info:doi/10.1109%2FWSC57314.2022.10015318&rft.externalDocID=10015318