Simheuristics: An Introductory Tutorial
Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex systems in which stochastic uncertainty is present. When the goal is to optimize the performance of these stochastic systems, simulation by itself...
Saved in:
Published in | Proceedings - Winter Simulation Conference pp. 1325 - 1339 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
11.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex systems in which stochastic uncertainty is present. When the goal is to optimize the performance of these stochastic systems, simulation by itself is not enough and it needs to be hybridized with optimization methods. Since many real-life optimization problems in the aforementioned industries are NP-hard and large scale, metaheuristic optimization algorithms are required. The simheuristics concept refers to the hybridization of simulation methods and metaheuristic algorithms. This paper provides an introductory tutorial to the concept of simheuristics, showing how it has been successfully employed in solving stochastic optimization problems in many application fields, from production logistics and transportation to telecommunication and insurance. Current research trends in the area of simheuristics, such as their combination with fuzzy logic techniques and machine learning methods, are also discussed. |
---|---|
AbstractList | Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex systems in which stochastic uncertainty is present. When the goal is to optimize the performance of these stochastic systems, simulation by itself is not enough and it needs to be hybridized with optimization methods. Since many real-life optimization problems in the aforementioned industries are NP-hard and large scale, metaheuristic optimization algorithms are required. The simheuristics concept refers to the hybridization of simulation methods and metaheuristic algorithms. This paper provides an introductory tutorial to the concept of simheuristics, showing how it has been successfully employed in solving stochastic optimization problems in many application fields, from production logistics and transportation to telecommunication and insurance. Current research trends in the area of simheuristics, such as their combination with fuzzy logic techniques and machine learning methods, are also discussed. |
Author | Li, Yuda Juan, Angel A. Panadero, Javier Ammouriova, Majsa Faulin, Javier |
Author_xml | – sequence: 1 givenname: Angel A. surname: Juan fullname: Juan, Angel A. email: ajuanp@upv.es organization: Universitat Politècnica de València,Dept. of Applied Statistics and Operations Research,Alcoy,SPAIN,03801 – sequence: 2 givenname: Yuda surname: Li fullname: Li, Yuda email: yli1@uoc.edu organization: Universitat Oberta de Catalunya,Dept. of Computer Science,Barcelona,SPAIN,08018 – sequence: 3 givenname: Majsa surname: Ammouriova fullname: Ammouriova, Majsa email: mammouriova@uoc.edu organization: Universitat Oberta de Catalunya,Dept. of Computer Science,Barcelona,SPAIN,08018 – sequence: 4 givenname: Javier surname: Panadero fullname: Panadero, Javier email: jpanaderom@uoc.edu organization: Universitat Oberta de Catalunya,Dept. of Computer Science,Barcelona,SPAIN,08018 – sequence: 5 givenname: Javier surname: Faulin fullname: Faulin, Javier email: javier.faulin@unavarra.es organization: Computer Science and Mathematics Public University of Navarre,Institute of Smart Cities Dept. of Statistics,Pamplona,SPAIN,31006 |
BookMark | eNo1j8lKA0EUAFtRMBP9A5G5eZqx3-t-vXgLg0sg4CERj6G3YEsyI7Mc8vcG1FNdioIq2EXbtYmxO-A1ALcPH-uGtABZI0esgXMgAeaMFaAUSa0UiHM2AyJTScHpihXD8HWyDAHO2P06Hz7T1OdhzGF4LBdtuWzHvotTGLv-WG6mE7LbX7PLndsP6eaPc_b-_LRpXqvV28uyWayqjIRjZVBa5bUzIIWPUQcdUNnoyEivIwqnnQ7OkPVobfTOOc65DSrttCT0WszZ7W83p5S2330-uP64_b8SP0OqQtg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/WSC57314.2022.10015318 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 1665476613 9781665476614 |
EISSN | 1558-4305 |
EndPage | 1339 |
ExternalDocumentID | 10015318 |
Genre | orig-research |
GrantInformation_xml | – fundername: Spanish Ministry of Science grantid: PID2019-111100RB-C21-C22 /AEI/10.13039/501100011033,RED2018-102642-T funderid: 10.13039/501100006280 |
GroupedDBID | 123 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS WH7 ~02 |
ID | FETCH-LOGICAL-i252t-82496b7a8143bdd7c7c269da584b7d23a7a7ca859b299dbaaa0009c6ef7452b73 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:18:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i252t-82496b7a8143bdd7c7c269da584b7d23a7a7ca859b299dbaaa0009c6ef7452b73 |
OpenAccessLink | http://hdl.handle.net/2117/384911 |
PageCount | 15 |
ParticipantIDs | ieee_primary_10015318 |
PublicationCentury | 2000 |
PublicationDate | 2022-Dec.-11 |
PublicationDateYYYYMMDD | 2022-12-11 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings - Winter Simulation Conference |
PublicationTitleAbbrev | WSC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0018512 |
Score | 2.2325912 |
Snippet | Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1325 |
SubjectTerms | Machine learning Manufacturing Metaheuristics Stochastic processes Transportation Tutorials Uncertainty |
Title | Simheuristics: An Introductory Tutorial |
URI | https://ieeexplore.ieee.org/document/10015318 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3qp1opvchA8JW022UziTYqlChahLfZW9lUsYlJKctBf706a1AcI3paFZZfZWebb3fm-AbjiiSbUyl3NpHDDmEeuDAPbKsWVMFkkMZGTH0fRcBo-zPisIquXXBhjTJl8Zjxqln_5OlMFPZV1SS_I-kzcgIa9uW3IWtsvAwsdWEUB9ntJ93nc5xj49GzCmFeP_FFDpQwhgxaM6sk3mSOvXpFLT3380mX89-r2ofPF1nOetnHoAHZM2oZWXa7BqU5vG_a-aQ8ewvV4-fZiikqo-ca5TZ17ylon_dds_e5MSNzAOmcHpoO7SX_oVlUT3CXjLHdje6GKJIrYIiGpNSpULEq0sEhDomaBQIFKxDyRNhJpKYQgnKUis8CQM4nBETTTLDXH4KBQFj0wrYXAUPk9aUwgQ2tVJJ075Z9Ah8wwX22EMea1BU7_6D-DXdoNygbx_XNo5uvCXNiYnsvLci8_AQEpnxk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20HtRLtVb8NgfBU9LuJptNvEmxtNoWoS32VvarWMRUSnLQX-9OmtQPELwtgbBhdpb3sjvvDcAVizWyVuZqKoUbRCx0ZeDbUW6uxONZHKE4uT8IO-PgfsImhVg918IYY_LiM-PhML_L1wuV4VFZA_2CbM5Em7BlgZ-RlVxrfWlgyQMtRMCkGTeehi3GfYIHJ5R65bs_uqjkINKuwqCcflU78uJlqfTUxy9nxn9_3x7Uv_R6zuMaifZhwyQ1qJYNG5xi_9Zg95v74AFcD-evzyYrrJpvnNvE6WLdOjrALpbvzgjtDWx61mHcvhu1Om7RN8GdU0ZTN7K_VKHkIrJcSGrNFVc0jLWwXENyTX3BBVciYrG0WKSlEAKZlgrNjAeMSu4fQiVZJOYIHC6U5Q9UayF4oEhTGuPLwEaVo9OdIsdQxzBM31bWGNMyAid_PL-E7c6o35v2uoOHU9jBlcHaEELOoJIuM3NuET6VF_m6fgKB76Ji |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+Winter+Simulation+Conference&rft.atitle=Simheuristics%3A+An+Introductory+Tutorial&rft.au=Juan%2C+Angel+A.&rft.au=Li%2C+Yuda&rft.au=Ammouriova%2C+Majsa&rft.au=Panadero%2C+Javier&rft.date=2022-12-11&rft.pub=IEEE&rft.eissn=1558-4305&rft.spage=1325&rft.epage=1339&rft_id=info:doi/10.1109%2FWSC57314.2022.10015318&rft.externalDocID=10015318 |