Handling Missing Data For Sleep Monitoring Systems

Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and well-being. Such systems can provide data visualizations to enable self-reflection on sleep habits or a sleep coaching service to improve sleep quality...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Affective Computing and Intelligent Interaction and workshops pp. 1 - 8
Main Authors Gashi, Shkurta, Alecci, Lidia, Gjoreski, Martin, Di Lascio, Elena, Mehrotra, Abhinav, Musolesi, Mirco, Debus, Maike E., Gasparini, Francesca, Santini, Silvia
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and well-being. Such systems can provide data visualizations to enable self-reflection on sleep habits or a sleep coaching service to improve sleep quality. To provide useful feedback, sleep monitoring systems must be able to recognize whether an individual is sleeping or awake. Existing approaches to infer sleep-wake phases, however, typically assume continuous streams of data to be available at inference time. In real-world settings, though, data streams or data samples may be missing, causing severe performance degradation of models trained on complete data streams. In this paper, we investigate the impact of missing data to recognize sleep and wake, and use regression- and interpolation-based imputation strategies to mitigate the errors that might be caused by incomplete data. To evaluate our approach, we use a data set that includes physiological traces - collected using wristbands -, behavioral data - gathered using smartphones - and self-reports from 16 participants over 30 days. Our results show that the presence of missing sensor data degrades the balanced accuracy of the classifier on average by 10-35 percentage points for detecting sleep and wake depending on the missing data rate. The impu-tation strategies explored in this work increase the performance of the classifier by 4-30 percentage points. These results open up new opportunities to improve the robustness of sleep monitoring systems against missing data.
AbstractList Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and well-being. Such systems can provide data visualizations to enable self-reflection on sleep habits or a sleep coaching service to improve sleep quality. To provide useful feedback, sleep monitoring systems must be able to recognize whether an individual is sleeping or awake. Existing approaches to infer sleep-wake phases, however, typically assume continuous streams of data to be available at inference time. In real-world settings, though, data streams or data samples may be missing, causing severe performance degradation of models trained on complete data streams. In this paper, we investigate the impact of missing data to recognize sleep and wake, and use regression- and interpolation-based imputation strategies to mitigate the errors that might be caused by incomplete data. To evaluate our approach, we use a data set that includes physiological traces - collected using wristbands -, behavioral data - gathered using smartphones - and self-reports from 16 participants over 30 days. Our results show that the presence of missing sensor data degrades the balanced accuracy of the classifier on average by 10-35 percentage points for detecting sleep and wake depending on the missing data rate. The impu-tation strategies explored in this work increase the performance of the classifier by 4-30 percentage points. These results open up new opportunities to improve the robustness of sleep monitoring systems against missing data.
Author Santini, Silvia
Gasparini, Francesca
Musolesi, Mirco
Gjoreski, Martin
Di Lascio, Elena
Alecci, Lidia
Gashi, Shkurta
Debus, Maike E.
Mehrotra, Abhinav
Author_xml – sequence: 1
  givenname: Shkurta
  surname: Gashi
  fullname: Gashi, Shkurta
  email: shkurta.gashi@usi.ch
  organization: Università della Svizzera italiana,Lugano,Switzerland
– sequence: 2
  givenname: Lidia
  surname: Alecci
  fullname: Alecci, Lidia
  email: lidia.alecci@usi.ch
  organization: Università della Svizzera italiana,Lugano,Switzerland
– sequence: 3
  givenname: Martin
  surname: Gjoreski
  fullname: Gjoreski, Martin
  email: martin.gjoreski@usi.ch
  organization: Università della Svizzera italiana,Lugano,Switzerland
– sequence: 4
  givenname: Elena
  surname: Di Lascio
  fullname: Di Lascio, Elena
  email: elena.di.lascio@usi.ch
  organization: Università della Svizzera italiana,Lugano,Switzerland
– sequence: 5
  givenname: Abhinav
  surname: Mehrotra
  fullname: Mehrotra, Abhinav
  email: a.mehrotra1@samsung.com
  organization: Samsung AI Center,Cambridge,United Kingdom
– sequence: 6
  givenname: Mirco
  surname: Musolesi
  fullname: Musolesi, Mirco
  email: m.musolesi@ucl.ac.uk
  organization: UCL and University of Bologna,London,United Kingdom
– sequence: 7
  givenname: Maike E.
  surname: Debus
  fullname: Debus, Maike E.
  email: maike.debus@unine.ch
  organization: Université de Neuchâtel,Neuchâtel,Switzerland
– sequence: 8
  givenname: Francesca
  surname: Gasparini
  fullname: Gasparini, Francesca
  email: francesca.gasparini@unimib.it
  organization: Università degli Studi di Milano-Bicocca,Milan,Italy
– sequence: 9
  givenname: Silvia
  surname: Santini
  fullname: Santini, Silvia
  email: silvia.santini@usi.ch
  organization: Università della Svizzera italiana,Lugano,Switzerland
BookMark eNotj8tKw0AUQEdRsK39AkHyA4n3TjKvZYm2DbS4qK7LPG5kJE1KJpv-vRS7OosDB86cPfRDT4y9IhSIYN5WddMIoQAKDpwXxohSl_yOzVFKUQkDWtyzGUchc42IT2yZ0i8AoBGgtZgxvrV96GL_k-1jSle-28lm62HMDh3ROdsPfZyG8WoOlzTRKT2zx9Z2iZY3Ltj3-uOr3ua7z01Tr3Z55AKnXLsgK-fQS0GubcEazbWV5IwjGbysKgtegbcqOFJYSek16pa8DxCUpnLBXv67kYiO5zGe7Hg53hbLPxc7SBk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACII55700.2022.9953832
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1665459085
9781665459082
EISSN 2156-8111
EndPage 8
ExternalDocumentID 9953832
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i251t-8bd64bb1c65ebff0a9828a6eb9be6dc644a0c70ca7dbe71466c818feccd0d78e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i251t-8bd64bb1c65ebff0a9828a6eb9be6dc644a0c70ca7dbe71466c818feccd0d78e3
OpenAccessLink https://discovery.ucl.ac.uk/10164860/1/acii22.pdf
PageCount 8
ParticipantIDs ieee_primary_9953832
PublicationCentury 2000
PublicationDate 2022-Oct.-18
PublicationDateYYYYMMDD 2022-10-18
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-18
  day: 18
PublicationDecade 2020
PublicationTitle International Conference on Affective Computing and Intelligent Interaction and workshops
PublicationTitleAbbrev ACII
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950885
Score 1.827499
Snippet Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Behavioral sciences
Biomedical monitoring
Data models
Data visualization
Degradation
Machine Learning
Missing Data
Robustness
Sleep and Wake Recognition
Wearable computers
Wearable Sensors
Title Handling Missing Data For Sleep Monitoring Systems
URI https://ieeexplore.ieee.org/document/9953832
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbGRhx6iSOXY-oULVIRQxU6lb5nLOEQG2F0oVfzzlJW4EYmGLFjuL4dHe-i987xm4h9VY6m3MPKXDpTMaNS5Ar4RT1BDqRgEaePqvxTD7N83mL3e2wMIhYHT7DODSrf_nFym1CqqxvDKlnRgb3gAK3Gqu1z6dU5UzzBgScCNO_H04mgWBKUBSYpnHz8I8qKpUTGXXYdPv6-uzIe7wpIXZfv5gZ_zu_I9bbw_Wil50jOmYtXJ6wzrZeQ9Sob5el40CpQEOiKS13uD7Y0kajFY35QFxHtYKHTF_UMJn32Gz0-Doc86ZmAn-jnUrJB1AoCZA4lSN4L6yhkMoqBAOoCke7HyucFs7qAlCTmVSOXLYnQRai0APMTll7uVriGYvyEE1JryEXIAtS3NTnVktJJiDz2sM564YlWKxrWoxF8_UXf9--ZIdBDMHsJ4Mr1i4_N3hN_ryEm0qQ37auoEE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1VMMBUoEV8k4GRpG5iO82IClUKTcXQSt0q2zlLCNRWKF349ZyTtBWIgSlWYkuOT3fPd_a9A7jToVXcKOFbHWqfmyTyE9NFXzIj6YujE3HZyNlYplP-PBOzBtxvc2EQsbx8hoFrlmf5-dKsXaiskySknhEZ3H3CfRFW2Vq7iEpZ0FTUacBdlnQe-sOho5hi5AeGYVAP_1FHpYSRQROyzQSq2yPvwbrQgfn6xc343xkeQXuXsOe9bqHoGBq4OIHmpmKDVytwC8LUkSpQFy-jBXfPR1Uob7CkPh-IK69ScRfr82ou8zZMB0-TfurXVRP8N9qrFH5P55Jr3TVSoLaWqYScKiVRJxplbmj_o5iJmVFxrjEmQykNgbYlUeYsj3sYncLeYrnAM_CE86e4jbVgmuekuqEVKuacjEBkY6vPoeWWYL6qiDHm9d9f_P36Fg7SSTaaj4bjl0s4dCJxINDtXcFe8bnGa0L3Qt-UQv0GSBCjiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Handling+Missing+Data+For+Sleep+Monitoring+Systems&rft.au=Gashi%2C+Shkurta&rft.au=Alecci%2C+Lidia&rft.au=Gjoreski%2C+Martin&rft.au=Di+Lascio%2C+Elena&rft.date=2022-10-18&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FACII55700.2022.9953832&rft.externalDocID=9953832