Handling Missing Data For Sleep Monitoring Systems
Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and well-being. Such systems can provide data visualizations to enable self-reflection on sleep habits or a sleep coaching service to improve sleep quality...
Saved in:
Published in | International Conference on Affective Computing and Intelligent Interaction and workshops pp. 1 - 8 |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
18.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and well-being. Such systems can provide data visualizations to enable self-reflection on sleep habits or a sleep coaching service to improve sleep quality. To provide useful feedback, sleep monitoring systems must be able to recognize whether an individual is sleeping or awake. Existing approaches to infer sleep-wake phases, however, typically assume continuous streams of data to be available at inference time. In real-world settings, though, data streams or data samples may be missing, causing severe performance degradation of models trained on complete data streams. In this paper, we investigate the impact of missing data to recognize sleep and wake, and use regression- and interpolation-based imputation strategies to mitigate the errors that might be caused by incomplete data. To evaluate our approach, we use a data set that includes physiological traces - collected using wristbands -, behavioral data - gathered using smartphones - and self-reports from 16 participants over 30 days. Our results show that the presence of missing sensor data degrades the balanced accuracy of the classifier on average by 10-35 percentage points for detecting sleep and wake depending on the missing data rate. The impu-tation strategies explored in this work increase the performance of the classifier by 4-30 percentage points. These results open up new opportunities to improve the robustness of sleep monitoring systems against missing data. |
---|---|
AbstractList | Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and well-being. Such systems can provide data visualizations to enable self-reflection on sleep habits or a sleep coaching service to improve sleep quality. To provide useful feedback, sleep monitoring systems must be able to recognize whether an individual is sleeping or awake. Existing approaches to infer sleep-wake phases, however, typically assume continuous streams of data to be available at inference time. In real-world settings, though, data streams or data samples may be missing, causing severe performance degradation of models trained on complete data streams. In this paper, we investigate the impact of missing data to recognize sleep and wake, and use regression- and interpolation-based imputation strategies to mitigate the errors that might be caused by incomplete data. To evaluate our approach, we use a data set that includes physiological traces - collected using wristbands -, behavioral data - gathered using smartphones - and self-reports from 16 participants over 30 days. Our results show that the presence of missing sensor data degrades the balanced accuracy of the classifier on average by 10-35 percentage points for detecting sleep and wake depending on the missing data rate. The impu-tation strategies explored in this work increase the performance of the classifier by 4-30 percentage points. These results open up new opportunities to improve the robustness of sleep monitoring systems against missing data. |
Author | Santini, Silvia Gasparini, Francesca Musolesi, Mirco Gjoreski, Martin Di Lascio, Elena Alecci, Lidia Gashi, Shkurta Debus, Maike E. Mehrotra, Abhinav |
Author_xml | – sequence: 1 givenname: Shkurta surname: Gashi fullname: Gashi, Shkurta email: shkurta.gashi@usi.ch organization: Università della Svizzera italiana,Lugano,Switzerland – sequence: 2 givenname: Lidia surname: Alecci fullname: Alecci, Lidia email: lidia.alecci@usi.ch organization: Università della Svizzera italiana,Lugano,Switzerland – sequence: 3 givenname: Martin surname: Gjoreski fullname: Gjoreski, Martin email: martin.gjoreski@usi.ch organization: Università della Svizzera italiana,Lugano,Switzerland – sequence: 4 givenname: Elena surname: Di Lascio fullname: Di Lascio, Elena email: elena.di.lascio@usi.ch organization: Università della Svizzera italiana,Lugano,Switzerland – sequence: 5 givenname: Abhinav surname: Mehrotra fullname: Mehrotra, Abhinav email: a.mehrotra1@samsung.com organization: Samsung AI Center,Cambridge,United Kingdom – sequence: 6 givenname: Mirco surname: Musolesi fullname: Musolesi, Mirco email: m.musolesi@ucl.ac.uk organization: UCL and University of Bologna,London,United Kingdom – sequence: 7 givenname: Maike E. surname: Debus fullname: Debus, Maike E. email: maike.debus@unine.ch organization: Université de Neuchâtel,Neuchâtel,Switzerland – sequence: 8 givenname: Francesca surname: Gasparini fullname: Gasparini, Francesca email: francesca.gasparini@unimib.it organization: Università degli Studi di Milano-Bicocca,Milan,Italy – sequence: 9 givenname: Silvia surname: Santini fullname: Santini, Silvia email: silvia.santini@usi.ch organization: Università della Svizzera italiana,Lugano,Switzerland |
BookMark | eNotj8tKw0AUQEdRsK39AkHyA4n3TjKvZYm2DbS4qK7LPG5kJE1KJpv-vRS7OosDB86cPfRDT4y9IhSIYN5WddMIoQAKDpwXxohSl_yOzVFKUQkDWtyzGUchc42IT2yZ0i8AoBGgtZgxvrV96GL_k-1jSle-28lm62HMDh3ROdsPfZyG8WoOlzTRKT2zx9Z2iZY3Ltj3-uOr3ua7z01Tr3Z55AKnXLsgK-fQS0GubcEazbWV5IwjGbysKgtegbcqOFJYSek16pa8DxCUpnLBXv67kYiO5zGe7Hg53hbLPxc7SBk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACII55700.2022.9953832 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1665459085 9781665459082 |
EISSN | 2156-8111 |
EndPage | 8 |
ExternalDocumentID | 9953832 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i251t-8bd64bb1c65ebff0a9828a6eb9be6dc644a0c70ca7dbe71466c818feccd0d78e3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:17:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i251t-8bd64bb1c65ebff0a9828a6eb9be6dc644a0c70ca7dbe71466c818feccd0d78e3 |
OpenAccessLink | https://discovery.ucl.ac.uk/10164860/1/acii22.pdf |
PageCount | 8 |
ParticipantIDs | ieee_primary_9953832 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-18 |
PublicationDateYYYYMMDD | 2022-10-18 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Affective Computing and Intelligent Interaction and workshops |
PublicationTitleAbbrev | ACII |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001950885 |
Score | 1.827499 |
Snippet | Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Behavioral sciences Biomedical monitoring Data models Data visualization Degradation Machine Learning Missing Data Robustness Sleep and Wake Recognition Wearable computers Wearable Sensors |
Title | Handling Missing Data For Sleep Monitoring Systems |
URI | https://ieeexplore.ieee.org/document/9953832 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbGRhx6iSOXY-oULVIRQxU6lb5nLOEQG2F0oVfzzlJW4EYmGLFjuL4dHe-i987xm4h9VY6m3MPKXDpTMaNS5Ar4RT1BDqRgEaePqvxTD7N83mL3e2wMIhYHT7DODSrf_nFym1CqqxvDKlnRgb3gAK3Gqu1z6dU5UzzBgScCNO_H04mgWBKUBSYpnHz8I8qKpUTGXXYdPv6-uzIe7wpIXZfv5gZ_zu_I9bbw_Wil50jOmYtXJ6wzrZeQ9Sob5el40CpQEOiKS13uD7Y0kajFY35QFxHtYKHTF_UMJn32Gz0-Doc86ZmAn-jnUrJB1AoCZA4lSN4L6yhkMoqBAOoCke7HyucFs7qAlCTmVSOXLYnQRai0APMTll7uVriGYvyEE1JryEXIAtS3NTnVktJJiDz2sM564YlWKxrWoxF8_UXf9--ZIdBDMHsJ4Mr1i4_N3hN_ryEm0qQ37auoEE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1VMMBUoEV8k4GRpG5iO82IClUKTcXQSt0q2zlLCNRWKF349ZyTtBWIgSlWYkuOT3fPd_a9A7jToVXcKOFbHWqfmyTyE9NFXzIj6YujE3HZyNlYplP-PBOzBtxvc2EQsbx8hoFrlmf5-dKsXaiskySknhEZ3H3CfRFW2Vq7iEpZ0FTUacBdlnQe-sOho5hi5AeGYVAP_1FHpYSRQROyzQSq2yPvwbrQgfn6xc343xkeQXuXsOe9bqHoGBq4OIHmpmKDVytwC8LUkSpQFy-jBXfPR1Uob7CkPh-IK69ScRfr82ou8zZMB0-TfurXVRP8N9qrFH5P55Jr3TVSoLaWqYScKiVRJxplbmj_o5iJmVFxrjEmQykNgbYlUeYsj3sYncLeYrnAM_CE86e4jbVgmuekuqEVKuacjEBkY6vPoeWWYL6qiDHm9d9f_P36Fg7SSTaaj4bjl0s4dCJxINDtXcFe8bnGa0L3Qt-UQv0GSBCjiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Handling+Missing+Data+For+Sleep+Monitoring+Systems&rft.au=Gashi%2C+Shkurta&rft.au=Alecci%2C+Lidia&rft.au=Gjoreski%2C+Martin&rft.au=Di+Lascio%2C+Elena&rft.date=2022-10-18&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FACII55700.2022.9953832&rft.externalDocID=9953832 |