Learning Signal Representations for EEG Cross-Subject Channel Selection and Trial Classification

EEG is a non-invasive powerful system that finds applications in several domains and research areas. Most EEG systems are multi-channel in nature, but multiple channels might include noisy and redundant information and increase computational times of automated EEG decoding algorithms. To reduce the...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1 - 6
Main Authors Massi, Michela C., Ieva, Francesca
Format Conference Proceeding
LanguageEnglish
Published IEEE 25.10.2021
Subjects
Online AccessGet full text
DOI10.1109/MLSP52302.2021.9596522

Cover

Loading…
Abstract EEG is a non-invasive powerful system that finds applications in several domains and research areas. Most EEG systems are multi-channel in nature, but multiple channels might include noisy and redundant information and increase computational times of automated EEG decoding algorithms. To reduce the signal-to-noise ratio, improve accuracy and reduce computational time, one may combine channel selection with feature extraction and dimensionality reduction. However, as EEG signals present high inter-subject variability, we introduce a novel algorithm for subject-independent channel selection through representation learning of EEG recordings. The algorithm exploits channel-specific 1D-CNNs as supervised feature extractors to maximize class separability and reduces a high dimensional multi-channel signal into a unique 1-Dimensional representation from which it selects the most relevant channels for classification. The algorithm can be transferred to new signals from new subjects and obtain novel highly informative trial vectors of controlled dimensionality to be fed to any kind of classifier.
AbstractList EEG is a non-invasive powerful system that finds applications in several domains and research areas. Most EEG systems are multi-channel in nature, but multiple channels might include noisy and redundant information and increase computational times of automated EEG decoding algorithms. To reduce the signal-to-noise ratio, improve accuracy and reduce computational time, one may combine channel selection with feature extraction and dimensionality reduction. However, as EEG signals present high inter-subject variability, we introduce a novel algorithm for subject-independent channel selection through representation learning of EEG recordings. The algorithm exploits channel-specific 1D-CNNs as supervised feature extractors to maximize class separability and reduces a high dimensional multi-channel signal into a unique 1-Dimensional representation from which it selects the most relevant channels for classification. The algorithm can be transferred to new signals from new subjects and obtain novel highly informative trial vectors of controlled dimensionality to be fed to any kind of classifier.
Author Ieva, Francesca
Massi, Michela C.
Author_xml – sequence: 1
  givenname: Michela C.
  surname: Massi
  fullname: Massi, Michela C.
  email: michelacarlotta.massi@polimi.it
  organization: Politecnico di Milano,MOX - Dept. of Mathematics
– sequence: 2
  givenname: Francesca
  surname: Ieva
  fullname: Ieva, Francesca
  email: francesca.ieva@polimi.it
  organization: Politecnico di Milano,MOX - Dept. of Mathematics
BookMark eNotz8FKxDAYBOAIetB1n0CQvEBr86dpk6OUui5UFLue1zT5s0ZquiT14NtbdE_DwPDBXJHzMAUk5JYVOWOFunvq-hcBvIAcCmC5EqoSAGdkrWrJapCs4lzyS_LeoY7BhwPt_SHokb7iMWLCMOvZTyFRN0XathvaxCmlrP8ePtHMtPnQIeBIexyXugypDpbuol-EZtQpeefNn3BNLpweE65PuSJvD-2uecy65822ue8yD4LNmVAaSlFIySteq0EOYCojhVOlsKUuDbi6YoOyTCAwO2hRGg5WMofWGC4EX5Gbf9cj4v4Y_ZeOP_vTb_4LBUJTFw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MLSP52302.2021.9596522
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728163383
1728163382
EndPage 6
ExternalDocumentID 9596522
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i251t-59a24508836379b8b2c6c85f945d4a4c2f761b9d15e21dba54c32d81fedcc3553
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:02 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i251t-59a24508836379b8b2c6c85f945d4a4c2f761b9d15e21dba54c32d81fedcc3553
OpenAccessLink http://hdl.handle.net/11311/1190423
PageCount 6
ParticipantIDs ieee_primary_9596522
PublicationCentury 2000
PublicationDate 2021-Oct.-25
PublicationDateYYYYMMDD 2021-10-25
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-25
  day: 25
PublicationDecade 2020
PublicationTitle 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)
PublicationTitleAbbrev MLSP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7910256
Snippet EEG is a non-invasive powerful system that finds applications in several domains and research areas. Most EEG systems are multi-channel in nature, but multiple...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification algorithms
Dimensionality reduction
EEG Channel Selection
EEG Signals
Electroencephalography
Feature extraction
Machine learning algorithms
Representation Learning
Signal processing
Signal processing algorithms
Title Learning Signal Representations for EEG Cross-Subject Channel Selection and Trial Classification
URI https://ieeexplore.ieee.org/document/9596522
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgGCXbTp7UbMbf4eBRukGBlvOyuRhnFrclu034oMui6Yx2F_96gVWNxoO3piGUAOE9vr73fQhdMZZlTtOU-AOYEZ4XQEyeC8J1KjMtrWIQ1Rb3cjTntwuxaKDrLy-Mcy6Kz1wSHuO_fLuBbQiVdZVQ0vOFJmr6i9vOq1WbfmlPdcd300mIcQZ7FaNJ3fhH1ZQIGsN9NP783E4r8pRsK5PA-69MjP8dzwHqfNvz8OQLeA5Rw5Vt9FhnSl3h6Xrldwd-iBrX2lpUvmHPTvFgcIP7AReJPzBCBAYHd0HpnvE01sPxDbEuLZ6FbYljwcwgJYo9dNB8OJj1R6Qun0DWnrRURCjNeOBfqUwzZXLDQEIuCsWF5ZoDKzJJjbJUOEat0YJDymxOC2cBPA1Jj1Cr3JTuGGGWQ896LuGoKThorT0JYVwHH6opAOAEtcPsLF92GTKW9cSc_v36DO2FFQoIwMQ5alWvW3fhob0yl3FNPwCIsaah
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRAu22u9szAVGBEIGEG_ZrDdEsRpeLv962rBiNB2-bTdNuOk3fy-x7MwBXlCaJlSTC7gKmmKWZxipNOWYyihMZG0F1UFsM496U3c34rALXGy-MtTaIz2zDP4Z_-WapVz5V1hRcxI4vbMG2w31O1m6t0vZLWqI56I9HPsvpDVaUNMrhP_qmBNjo7sHga8G1WuS5sSpUQ3_8qsX43y_ah_q3QQ-NNtBzABWb1-CxrJX6hMaLJ3c-0ENQuZbmovwdOX6KOp0b1PbIiN2V4XMwyPsLcvuCxqEjjhuIZG7QxB9MFFpmejFRmKEO025n0u7hsoECXjjaUmAuJGWegUVxlAiVKqpjnfJMMG6YZJpmSUyUMIRbSoySnOmImpRk1mjtiEh0CNV8mdsjQDTVLePYhCUqY1pK6WgIZdI7UVWmtT6Gmt-d-eu6Rsa83JiTv19fwk5vMujP-7fD-1PY9dHyeED5GVSLt5U9d0BfqIsQ309n6qnq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+31st+International+Workshop+on+Machine+Learning+for+Signal+Processing+%28MLSP%29&rft.atitle=Learning+Signal+Representations+for+EEG+Cross-Subject+Channel+Selection+and+Trial+Classification&rft.au=Massi%2C+Michela+C.&rft.au=Ieva%2C+Francesca&rft.date=2021-10-25&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP52302.2021.9596522&rft.externalDocID=9596522