Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding

Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image codecs, such as JPEG, JPEG 2000 and HEIC. In this paper, a crowdsourcing based subjective quality evaluation procedure was used to benchmark a...

Full description

Saved in:
Bibliographic Details
Published inVisual communications and image processing (Online) pp. 1 - 5
Main Authors Upenik, Evgeniy, Testolina, Michela, Ascenso, Joao, Pereira, Fernando, Ebrahimi, Touradj
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.12.2021
Subjects
Online AccessGet full text
ISSN2642-9357
DOI10.1109/VCIP53242.2021.9675314

Cover

Loading…
Abstract Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image codecs, such as JPEG, JPEG 2000 and HEIC. In this paper, a crowdsourcing based subjective quality evaluation procedure was used to benchmark a representative set of end-to-end deep learning-based image codecs submitted to the MMSP'2020 Grand Challenge on Learning-Based Image Coding and the JPEG AI Call for Evidence. For the first time, a double stimulus methodology with a continuous quality scale was applied to evaluate this type of image codecs. The subjective experiment is one of the largest ever reported including more than 240 pair-comparisons evaluated by 118 naïve subjects. The results of the benchmarking of learning-based image coding solutions against conventional codecs are organized in a dataset of differential mean opinion scores along with the stimuli and made publicly available.
AbstractList Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image codecs, such as JPEG, JPEG 2000 and HEIC. In this paper, a crowdsourcing based subjective quality evaluation procedure was used to benchmark a representative set of end-to-end deep learning-based image codecs submitted to the MMSP'2020 Grand Challenge on Learning-Based Image Coding and the JPEG AI Call for Evidence. For the first time, a double stimulus methodology with a continuous quality scale was applied to evaluate this type of image codecs. The subjective experiment is one of the largest ever reported including more than 240 pair-comparisons evaluated by 118 naïve subjects. The results of the benchmarking of learning-based image coding solutions against conventional codecs are organized in a dataset of differential mean opinion scores along with the stimuli and made publicly available.
Author Upenik, Evgeniy
Ebrahimi, Touradj
Pereira, Fernando
Testolina, Michela
Ascenso, Joao
Author_xml – sequence: 1
  givenname: Evgeniy
  surname: Upenik
  fullname: Upenik, Evgeniy
  email: evgeniy.upenik@epfl.ch
  organization: Multimedia Signal Processing Group - Ecole Polytechnique Fédérale de Lausanne
– sequence: 2
  givenname: Michela
  surname: Testolina
  fullname: Testolina, Michela
  email: michela.testolina@epfl.ch
  organization: Multimedia Signal Processing Group - Ecole Polytechnique Fédérale de Lausanne
– sequence: 3
  givenname: Joao
  surname: Ascenso
  fullname: Ascenso, Joao
  email: joao.ascenso@lx.it.pt
  organization: Instituto de Telecornunicações - Instituto Superior Técnico
– sequence: 4
  givenname: Fernando
  surname: Pereira
  fullname: Pereira, Fernando
  email: fernando.pereira@lx.it.pt
  organization: Instituto de Telecornunicações - Instituto Superior Técnico
– sequence: 5
  givenname: Touradj
  surname: Ebrahimi
  fullname: Ebrahimi, Touradj
  email: touradj.ebrahimi@epfl.ch
  organization: Multimedia Signal Processing Group - Ecole Polytechnique Fédérale de Lausanne
BookMark eNotkNtKw0AYhFdRsK19AkH2BTbuIZvdvdTQaiCgUu1t-ZP8W7akieRQ6dsbsFcDM8PHMHNy07QNEvIoeCQEd0_bNPvQSsYyklyKyCVGKxFfkbkw0gqrtVDXZCaTWDKntLkjy74_cM7lFEhnZ2SbQ7dHtimhRpp27W_Vt2NXhmZPN2NxwHIIJ6SfI9RhONPVCeoRhtA2tPU0R-iaqcleoMeKZkfYT4y2mqx7cuuh7nF50QX5Xq--0jeWv79m6XPOwrRgYNpxbZNSSFugtoWpQGlfmAJUoqXzjnNrlIPYeSli5W2SxEZ5bTx6hNIWakEe_rkBEXc_XThCd95dblB_nYpT2g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VCIP53242.2021.9675314
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1728185513
9781728185514
EISSN 2642-9357
EndPage 5
ExternalDocumentID 9675314
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i251t-590586c128be58b7da35fb7ba36529f9008739a49f2143f866473f57fefeac8b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i251t-590586c128be58b7da35fb7ba36529f9008739a49f2143f866473f57fefeac8b3
OpenAccessLink https://infoscience.epfl.ch/record/289485/files/Large_Scale_Crowdsourcing_Subjective_Quality_Evaluation_of_Learning_Based_Image_Coding.pdf
PageCount 5
ParticipantIDs ieee_primary_9675314
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle Visual communications and image processing (Online)
PublicationTitleAbbrev VCIP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513298
Score 2.1809435
Snippet Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Codecs
Crowdsourcing
deep learning
Degradation
Image coding
learning-based compression
subjective evaluation
Transform coding
Visual communication
visual quality
Title Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
URI https://ieeexplore.ieee.org/document/9675314
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDI3GTpwGbIhv5cCRdG3SJM2VatOGGJoEm3abmiZBgFgRdAf49ThtGQJx4NZUilLZsp_t2i8InUstwPy0JpJxR2KjwaTCnBMjuaY2ikTO_IDz5EaMZvHVgi9a6GIzC2OtrZrPbOAfq3_5psjXvlTWVxDdMn9r9RYkbvWs1qaeAjjNqEqaIeAoVP15Op5yHy9AFkijoNn84xaVCkSGHTT5Or7uHXkK1qUO8o9fzIz__b4d1Pse18PTDRDtopZd7aFOE1_ixnrfumh-7du-yS2oxeIU8m9Tle5hDwb_8Vi7PlyzarzjwYYHHBcONzys9-QSYM_g8TP4IZwW_sAemg0Hd-mINPcqkAeQUkm4CnkickAmbXmipclAT1rqjAlOlVOepo6pLFaOQjTlEiFiyRyXzjpw04lm-6i9Klb2AGGZh1FGQ6EUNXGYiYTCyhiWaBUDCvBD1PViWr7U1BnLRkJHf78-RtteVVW3CD9B7fJ1bU8B80t9Vin7EyFCq20
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDI2mcYDTgA3xTQ4cSdc2TdJcqTZtsE2T2KbdpqZJESBWBN0Bfj1OW4pAHLi1laJEtuznuPYzQpdCcTA_pYigLCWBVmBSbsKIFkz5xvN4Qm2D83jCB_PgZsmWDXRV98IYY4riM-PYx-Jfvs6SjU2VdSVEt9ROrd5ithm37NaqMyqA1NSXYdUG7Lmyu4iGU2YjBrgH-p5TLf8xR6WAkX4Ljb8OUFaPPDmbXDnJxy9uxv-ecBd1vhv28LSGoj3UMOt91KoiTFzZ71sbLUa28JvcgWIMjuAGrovkPazB4EEeS-eHS16Nd9yrmcBxluKKifWeXAPwaTx8Bk-Eo8xu2EHzfm8WDUg1WYE8gJRywqTLQp4ANinDQiV0DJpSQsWUM1-m0hLVURkHMvUhnkpDzgNBUyZSk4KjDhU9QM11tjaHCIvE9WLf5VL6OnBjHvrwpjUNlQwAB9gRalsxrV5K8oxVJaHjvz9foO3BbDxajYaT2xO0Y9VW1I6wU9TMXzfmDCKAXJ0Xiv8EQVSutQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Visual+communications+and+image+processing+%28Online%29&rft.atitle=Large-Scale+Crowdsourcing+Subjective+Quality+Evaluation+of+Learning-Based+Image+Coding&rft.au=Upenik%2C+Evgeniy&rft.au=Testolina%2C+Michela&rft.au=Ascenso%2C+Joao&rft.au=Pereira%2C+Fernando&rft.date=2021-12-05&rft.pub=IEEE&rft.eissn=2642-9357&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVCIP53242.2021.9675314&rft.externalDocID=9675314