Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image codecs, such as JPEG, JPEG 2000 and HEIC. In this paper, a crowdsourcing based subjective quality evaluation procedure was used to benchmark a...
Saved in:
Published in | Visual communications and image processing (Online) pp. 1 - 5 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
05.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2642-9357 |
DOI | 10.1109/VCIP53242.2021.9675314 |
Cover
Loading…
Abstract | Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image codecs, such as JPEG, JPEG 2000 and HEIC. In this paper, a crowdsourcing based subjective quality evaluation procedure was used to benchmark a representative set of end-to-end deep learning-based image codecs submitted to the MMSP'2020 Grand Challenge on Learning-Based Image Coding and the JPEG AI Call for Evidence. For the first time, a double stimulus methodology with a continuous quality scale was applied to evaluate this type of image codecs. The subjective experiment is one of the largest ever reported including more than 240 pair-comparisons evaluated by 118 naïve subjects. The results of the benchmarking of learning-based image coding solutions against conventional codecs are organized in a dataset of differential mean opinion scores along with the stimuli and made publicly available. |
---|---|
AbstractList | Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image codecs, such as JPEG, JPEG 2000 and HEIC. In this paper, a crowdsourcing based subjective quality evaluation procedure was used to benchmark a representative set of end-to-end deep learning-based image codecs submitted to the MMSP'2020 Grand Challenge on Learning-Based Image Coding and the JPEG AI Call for Evidence. For the first time, a double stimulus methodology with a continuous quality scale was applied to evaluate this type of image codecs. The subjective experiment is one of the largest ever reported including more than 240 pair-comparisons evaluated by 118 naïve subjects. The results of the benchmarking of learning-based image coding solutions against conventional codecs are organized in a dataset of differential mean opinion scores along with the stimuli and made publicly available. |
Author | Upenik, Evgeniy Ebrahimi, Touradj Pereira, Fernando Testolina, Michela Ascenso, Joao |
Author_xml | – sequence: 1 givenname: Evgeniy surname: Upenik fullname: Upenik, Evgeniy email: evgeniy.upenik@epfl.ch organization: Multimedia Signal Processing Group - Ecole Polytechnique Fédérale de Lausanne – sequence: 2 givenname: Michela surname: Testolina fullname: Testolina, Michela email: michela.testolina@epfl.ch organization: Multimedia Signal Processing Group - Ecole Polytechnique Fédérale de Lausanne – sequence: 3 givenname: Joao surname: Ascenso fullname: Ascenso, Joao email: joao.ascenso@lx.it.pt organization: Instituto de Telecornunicações - Instituto Superior Técnico – sequence: 4 givenname: Fernando surname: Pereira fullname: Pereira, Fernando email: fernando.pereira@lx.it.pt organization: Instituto de Telecornunicações - Instituto Superior Técnico – sequence: 5 givenname: Touradj surname: Ebrahimi fullname: Ebrahimi, Touradj email: touradj.ebrahimi@epfl.ch organization: Multimedia Signal Processing Group - Ecole Polytechnique Fédérale de Lausanne |
BookMark | eNotkNtKw0AYhFdRsK19AkH2BTbuIZvdvdTQaiCgUu1t-ZP8W7akieRQ6dsbsFcDM8PHMHNy07QNEvIoeCQEd0_bNPvQSsYyklyKyCVGKxFfkbkw0gqrtVDXZCaTWDKntLkjy74_cM7lFEhnZ2SbQ7dHtimhRpp27W_Vt2NXhmZPN2NxwHIIJ6SfI9RhONPVCeoRhtA2tPU0R-iaqcleoMeKZkfYT4y2mqx7cuuh7nF50QX5Xq--0jeWv79m6XPOwrRgYNpxbZNSSFugtoWpQGlfmAJUoqXzjnNrlIPYeSli5W2SxEZ5bTx6hNIWakEe_rkBEXc_XThCd95dblB_nYpT2g |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/VCIP53242.2021.9675314 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1728185513 9781728185514 |
EISSN | 2642-9357 |
EndPage | 5 |
ExternalDocumentID | 9675314 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i251t-590586c128be58b7da35fb7ba36529f9008739a49f2143f866473f57fefeac8b3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i251t-590586c128be58b7da35fb7ba36529f9008739a49f2143f866473f57fefeac8b3 |
OpenAccessLink | https://infoscience.epfl.ch/record/289485/files/Large_Scale_Crowdsourcing_Subjective_Quality_Evaluation_of_Learning_Based_Image_Coding.pdf |
PageCount | 5 |
ParticipantIDs | ieee_primary_9675314 |
PublicationCentury | 2000 |
PublicationDate | 2021-Dec.-5 |
PublicationDateYYYYMMDD | 2021-12-05 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Visual communications and image processing (Online) |
PublicationTitleAbbrev | VCIP |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002513298 |
Score | 2.1809435 |
Snippet | Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Benchmark testing Codecs Crowdsourcing deep learning Degradation Image coding learning-based compression subjective evaluation Transform coding Visual communication visual quality |
Title | Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding |
URI | https://ieeexplore.ieee.org/document/9675314 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDI3GTpwGbIhv5cCRdG3SJM2VatOGGJoEm3abmiZBgFgRdAf49ThtGQJx4NZUilLZsp_t2i8InUstwPy0JpJxR2KjwaTCnBMjuaY2ikTO_IDz5EaMZvHVgi9a6GIzC2OtrZrPbOAfq3_5psjXvlTWVxDdMn9r9RYkbvWs1qaeAjjNqEqaIeAoVP15Op5yHy9AFkijoNn84xaVCkSGHTT5Or7uHXkK1qUO8o9fzIz__b4d1Pse18PTDRDtopZd7aFOE1_ixnrfumh-7du-yS2oxeIU8m9Tle5hDwb_8Vi7PlyzarzjwYYHHBcONzys9-QSYM_g8TP4IZwW_sAemg0Hd-mINPcqkAeQUkm4CnkickAmbXmipclAT1rqjAlOlVOepo6pLFaOQjTlEiFiyRyXzjpw04lm-6i9Klb2AGGZh1FGQ6EUNXGYiYTCyhiWaBUDCvBD1PViWr7U1BnLRkJHf78-RtteVVW3CD9B7fJ1bU8B80t9Vin7EyFCq20 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDI2mcYDTgA3xTQ4cSdc2TdJcqTZtsE2T2KbdpqZJESBWBN0Bfj1OW4pAHLi1laJEtuznuPYzQpdCcTA_pYigLCWBVmBSbsKIFkz5xvN4Qm2D83jCB_PgZsmWDXRV98IYY4riM-PYx-Jfvs6SjU2VdSVEt9ROrd5ithm37NaqMyqA1NSXYdUG7Lmyu4iGU2YjBrgH-p5TLf8xR6WAkX4Ljb8OUFaPPDmbXDnJxy9uxv-ecBd1vhv28LSGoj3UMOt91KoiTFzZ71sbLUa28JvcgWIMjuAGrovkPazB4EEeS-eHS16Nd9yrmcBxluKKifWeXAPwaTx8Bk-Eo8xu2EHzfm8WDUg1WYE8gJRywqTLQp4ANinDQiV0DJpSQsWUM1-m0hLVURkHMvUhnkpDzgNBUyZSk4KjDhU9QM11tjaHCIvE9WLf5VL6OnBjHvrwpjUNlQwAB9gRalsxrV5K8oxVJaHjvz9foO3BbDxajYaT2xO0Y9VW1I6wU9TMXzfmDCKAXJ0Xiv8EQVSutQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Visual+communications+and+image+processing+%28Online%29&rft.atitle=Large-Scale+Crowdsourcing+Subjective+Quality+Evaluation+of+Learning-Based+Image+Coding&rft.au=Upenik%2C+Evgeniy&rft.au=Testolina%2C+Michela&rft.au=Ascenso%2C+Joao&rft.au=Pereira%2C+Fernando&rft.date=2021-12-05&rft.pub=IEEE&rft.eissn=2642-9357&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVCIP53242.2021.9675314&rft.externalDocID=9675314 |