Image retrieval via topic modelling of Instagram hashtags

Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and r...

Full description

Saved in:
Bibliographic Details
Published in2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA pp. 1 - 8
Main Author Tsapatsoulis, Nicolas
Format Conference Proceeding
LanguageEnglish
Published IEEE 29.10.2020
Subjects
Online AccessGet full text
DOI10.1109/SMAP49528.2020.9248465

Cover

Abstract Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply graph based topic modelling on Instagram hashtags in order to predict the subject of the related images and we propose an innovative image retrieval scheme that can be used in the context of Instagram with minimal training requirements.
AbstractList Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply graph based topic modelling on Instagram hashtags in order to predict the subject of the related images and we propose an innovative image retrieval scheme that can be used in the context of Instagram with minimal training requirements.
Author Tsapatsoulis, Nicolas
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Tsapatsoulis
  fullname: Tsapatsoulis, Nicolas
  email: nicolas.tsapatsoulis@cut.ac.cy
  organization: Cyprus University of Technology,Dept. of Communication and Internet Studies,Limassol,Cyprus,CY-3036
BookMark eNotj8tKw0AUQEfQhdZ-gSDzA4lz55HMXZbiI1BRsPtyk9xJB_Iok1Dw7y3Y1TmrA-dB3I7TyEI8g8oBFL78fG6-LTrtc620ylFbbwt3I9ZYeii1B4eA7l5gNVDHMvGSIp-pl-dIcplOsZHD1HLfx7GTU5DVOC_UJRrkkebjRedHcReon3l95Urs3173249s9_VebTe7LGoHS2ZD66HWUNakgnXkG-9CzdYH2xTWIxhbAF1MM6BpgzLOG9RgEC2o0qzE0382MvPhlOJA6fdw_TF_UJhDtQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SMAP49528.2020.9248465
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728159195
1728159199
EndPage 8
ExternalDocumentID 9248465
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i251t-4fd81b217ba0f45a8c85fbe48f4c648913461a6482e193df0358392139941073
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:12 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i251t-4fd81b217ba0f45a8c85fbe48f4c648913461a6482e193df0358392139941073
OpenAccessLink https://hdl.handle.net/20.500.14279/23111
PageCount 8
ParticipantIDs ieee_primary_9248465
PublicationCentury 2000
PublicationDate 2020-Oct.-29
PublicationDateYYYYMMDD 2020-10-29
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA
PublicationTitleAbbrev SMAP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7476952
Snippet Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
automatic image annotation
Image annotation
Image retrieval
Instagram hashtags
learning by example
Multimedia Web sites
Semantics
Social networking (online)
Topic modelling
Training
Title Image retrieval via topic modelling of Instagram hashtags
URI https://ieeexplore.ieee.org/document/9248465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0AJ09qwPidHjzaZVnapXs0RoImGBIx4UbabhuIkSWwcPDXO1NWjMaDt0mzyfZrO2-28-YB3MTGCqO15EmuNBcmy7jqGs-tlj38zmMvg8bS8DkdvIqniZzU4HbPhXHOheQzF5EZ7vLzwm7oV1kbYwV0l7IOddxmO65WRfrtxFn7ZXg3QrifUMJWEkfVwz9UU4LT6B_C8Ot1u1yRt2hTmsh-_KrE-N_-HEHrm57HRnvHcww1t2hC9viORwNbBYUs3D5sO9esLJZzy4LaDdHOWeEZZQdoSsliM72eobluwbj_ML4f8EoXgc8RjZRc-BzBJsYSRsdeSK2skt44obywqaB7R5F2NFqJQ3iW-7grCQYh1ssERnvdE2gsioU7BZbiTHVyn_a0U4IKEljXo4qRSuMKSivOoEmjni53lS-m1YDP_26-gAOaeTrZk-wSGuVq467QZZfmOqzVJ0ttlyI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHO8ZoR3c0RgLKCImYcCNt1wZiZASGB_96X8vEaDx4e1mWrN1b-763ft97ADeh0kxJyWmUCUmZShIqWspSLXkb13loue-xlA7i7gt7HPNxBW63WhhjjCefmcCZ_iw_y_Xa_SprYK6A4ZLvwC7GfcY3aq1S9tsMk8ZzejdEwB85ylYUBuXtP_qm-LDROYD064EbtshrsC5UoD9-1WL874gOof4t0CPDbeg5goqZ1yDpveHmQJa-RxZ-QOR9JkmRL2aa-H43TnhOckscP0A6UhaZytUUzVUdRp2H0X2Xlp0R6AzxSEGZzRBuYjahZGgZl0ILbpVhwjIdM3fyyOKmRCsyCNAyG7a4A0KI9hKG-V7rGKrzfG5OgMT4ppqZjdvSCOZKEmjTdjUjhUQfcs1OoeZmPVlsal9Mygmf_X35Gva6o7Q_6fcGT-ew77zg9vkouYBqsVybSwzghbryfvsEagyabw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+15th+International+Workshop+on+Semantic+and+Social+Media+Adaptation+and+Personalization+%28SMA&rft.atitle=Image+retrieval+via+topic+modelling+of+Instagram+hashtags&rft.au=Tsapatsoulis%2C+Nicolas&rft.date=2020-10-29&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FSMAP49528.2020.9248465&rft.externalDocID=9248465