3D ShapeNets: A deep representation for volumetric shapes
3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful...
Saved in:
Published in | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1912 - 1920 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 2575-7075 |
DOI | 10.1109/CVPR.2015.7298801 |
Cover
Loading…
Abstract | 3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representation automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet - a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks. |
---|---|
AbstractList | 3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representation automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet - a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks. |
Author | Xiaoou Tang Zhirong Wu Xiao, Jianxiong Linguang Zhang Khosla, Aditya Fisher Yu Song, Shuran |
Author_xml | – sequence: 1 surname: Zhirong Wu fullname: Zhirong Wu organization: Princeton University, USA – sequence: 2 givenname: Shuran surname: Song fullname: Song, Shuran organization: Princeton University, USA – sequence: 3 givenname: Aditya surname: Khosla fullname: Khosla, Aditya organization: Massachusetts Institute of Technology, USA – sequence: 4 surname: Fisher Yu fullname: Fisher Yu organization: Princeton University, USA – sequence: 5 surname: Linguang Zhang fullname: Linguang Zhang organization: Princeton University, USA – sequence: 6 surname: Xiaoou Tang fullname: Xiaoou Tang organization: Chinese University of Hong Kong, China – sequence: 7 givenname: Jianxiong surname: Xiao fullname: Xiao, Jianxiong organization: Princeton University, USA |
BookMark | eNpNkEtLw0AUhUepYFv7A8RNlm5S751J5uGutL6gqPjahsnkBgfSJM6kgv_eSrtwdc7i4-NwJmzUdi0xdo4wRwRztfx4fplzwHyuuNEa8IhNMJNKSCMzOGZjBClSadCM_vVTNovRlyAAtDEcxsyIVfL6aXt6pCFeJ4ukIuqTQH2gSO1gB9-1Sd2F5LtrthsagndJ_OPjGTupbRNpdsgpe7-9eVvep-unu4flYp16nuOQckRT51Bqy0tHSGi0cfVuuJWouHOmcrUulZauNiKvapsJKSRXFbfaOnRiyi733j50X1uKQ7Hx0VHT2Ja6bSxQKRA8A4AderFHPREVffAbG36Kw0HiFy3qWFg |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2015.7298801 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1467369640 9781467369640 |
EISSN | 1063-6919 2575-7075 |
EndPage | 1920 |
ExternalDocumentID | 7298801 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i251t-2119f50b8a2bce1e1989cf015a6172cc9dcf8b786cf935dfa4363627d2a8ac1c3 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Fri Jul 11 07:55:16 EDT 2025 Wed Aug 27 02:26:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i251t-2119f50b8a2bce1e1989cf015a6172cc9dcf8b786cf935dfa4363627d2a8ac1c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
OpenAccessLink | https://doi.org/10.1109/CVPR.2015.7298801 |
PQID | 1770324000 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1770324000 ieee_primary_7298801 |
PublicationCentury | 2000 |
PublicationDate | 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib030089920 ssj0023720 ssj0003211698 |
Score | 2.5715232 |
Snippet | 3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1912 |
SubjectTerms | Categories Computational modeling Computer vision Convolution Object recognition Pattern recognition Planning Representations Shape Solid modeling Three dimensional Three dimensional models Three-dimensional displays |
Title | 3D ShapeNets: A deep representation for volumetric shapes |
URI | https://ieeexplore.ieee.org/document/7298801 https://www.proquest.com/docview/1770324000 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6qJ09VW7G-WMGjqUk22c16Ex8UoaWoFW9lH7MoQlpMevHXu5NHBfXgLSwJSSaTmW92vpkh5EyAibmJssAxGwYI4AMpXBKwxCrBtRCpxX3I8YSPZsn9S_rSIefrWhgAqMhnMMTDKpdvF2aFW2UXHgh6dfOxzoYP3OparVZ3WIj5qwb6oBVmPrLhcp1RiHEaS5X55CzgMpJNhjMK5cX18_QBSV7psLlBM2nll3mufM5dl4zbp62pJu_DVamH5vNHI8f_vs426X9X99Hp2m_tkA7ku6TbwFHa_OyFX2onPrRrPSLZDX18VUuYQFlc0itqAZa0aozZFjHl1MNgWhs97P5PCzy_6JPZ3e3T9Shohi8Ebx7ylAF2fnNpqDMVawMRILfKOC8khZjHGGmNy7TIuHGSpdaphHHvDIWNVaZMZNge2cwXOewTKkOITCRUpjkkXDvtYumcrbuNhVoOSA-FM1_W_TXmjVwG5LQV_9zrPCYyVA6LVTGPhLdTSH4ND_6-9JBs4fesKV1HZLP8WMGxBw-lPqm05gtw3L5m |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwELUQHIYTwyZgWDwSR9LEcWLH3BCLmqVbiE3cIi9lgZDSLZK-zNePK0sjwRzmFlmJnFTKVc-uqleEHEqwibAsjzx3cYQAPlLSpxFPnZbCSJk5PIccjcXwKb1-yV4WyNG8FgYAmuQzGOBlE8t3EzvDo7LjAASDuoW9zlLw-xlrq7V67eExRrA68IN2mIe9jVDzmEKC_Via2KfgkVBMdTFOFqvjs-e7e0zzygbdFF2vlW8GuvE6lytk1L9vm2zyPpjVZmD_fKFy_N8P-kk2Puv76N3cc62SBSjXyEoHSGm33Ksw1Pd86MfWieLn9OFVT2EMdXVCT6kDmNKGGrMvYyppAMK0NXvI_08rvL_aIE-XF49nw6hrvxC9BdBTR8j95rPY5DoxFhhgdpX1QUgaUY-1ylmfG5kL6xXPnNcpF8EdSpfoXFtm-SZZLCclbBGqYmCWSZ0bAakw3vhEee9avrHYqG2yjsIppi3DRtHJZZv87sVfBK3HUIYuYTKrCiaDpcL013jn348ekB_Dx9FtcXs1vvlFlvHftgleu2Sx_pjBXoAStdlvNOgvkObBrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=3D+ShapeNets%3A+A+deep+representation+for+volumetric+shapes&rft.au=Zhirong+Wu&rft.au=Song%2C+Shuran&rft.au=Khosla%2C+Aditya&rft.au=Fisher+Yu&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1912&rft.epage=1920&rft_id=info:doi/10.1109%2FCVPR.2015.7298801&rft.externalDocID=7298801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |