Bringing State-Separating Proofs to EasyCrypt A Security Proof for Cryptobox
Machine-checked cryptography aims to reinforce confidence in the primitives and protocols that underpin all digital security. However, machine-checked proof techniques remain in practice difficult to apply to real-world constructions. A particular challenge is structured reasoning about complex cons...
Saved in:
Published in | 2022 IEEE 35th Computer Security Foundations Symposium (CSF) pp. 227 - 242 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine-checked cryptography aims to reinforce confidence in the primitives and protocols that underpin all digital security. However, machine-checked proof techniques remain in practice difficult to apply to real-world constructions. A particular challenge is structured reasoning about complex constructions at different levels of abstraction. The State-Separating Proofs (SSP) methodology for guiding cryptographic proofs by Brzuska, Delignat-Lavaud, Fournet, Kohbrok and Kohlweiss (ASIACRYPT'18) is a promising contestant to support such reasoning. In this work, we explore how SSPs can guide EasyCrypt formalisations of proofs for modular constructions. Concretely, we propose a mapping from SSP to EasyCrypt concepts which enables us to enhance cryptographic proofs with SSP insights while maintaining compatibility with existing EasyCrypt proof support. To showcase our insights, we develop a formal security proof for the cryptobox family of public-key authenticated encryption schemes based on non-interactive key exchange and symmetric authenticated encryption. As a side effect, we obtain the first formal security proof for NaCl's instantiation of cryptobox. Finally we discuss changes to the practice of SSP on paper and potential implications for future tool designers. |
---|---|
AbstractList | Machine-checked cryptography aims to reinforce confidence in the primitives and protocols that underpin all digital security. However, machine-checked proof techniques remain in practice difficult to apply to real-world constructions. A particular challenge is structured reasoning about complex constructions at different levels of abstraction. The State-Separating Proofs (SSP) methodology for guiding cryptographic proofs by Brzuska, Delignat-Lavaud, Fournet, Kohbrok and Kohlweiss (ASIACRYPT'18) is a promising contestant to support such reasoning. In this work, we explore how SSPs can guide EasyCrypt formalisations of proofs for modular constructions. Concretely, we propose a mapping from SSP to EasyCrypt concepts which enables us to enhance cryptographic proofs with SSP insights while maintaining compatibility with existing EasyCrypt proof support. To showcase our insights, we develop a formal security proof for the cryptobox family of public-key authenticated encryption schemes based on non-interactive key exchange and symmetric authenticated encryption. As a side effect, we obtain the first formal security proof for NaCl's instantiation of cryptobox. Finally we discuss changes to the practice of SSP on paper and potential implications for future tool designers. |
Author | Kohbrok, Konrad Oechsner, Sabine Dupressoir, Francois |
Author_xml | – sequence: 1 givenname: Francois surname: Dupressoir fullname: Dupressoir, Francois email: fdupress@gmail.com organization: University of Bristol,UK – sequence: 2 givenname: Konrad surname: Kohbrok fullname: Kohbrok, Konrad email: konrad.kohbrok@aalto.fi organization: Aalto University,Finland – sequence: 3 givenname: Sabine surname: Oechsner fullname: Oechsner, Sabine email: s.oechsner@ed.ac.uk organization: University of Edinburgh,UK |
BookMark | eNotj1FLwzAUhSPog879AhHyB1pz0ya3eZxlc0JBofo8kvZGCtqUNIL99zo3OPDB-eDAuWGXYxiJsXsQOYAwD3W7U2VVylwKKXNjwGiEC7Y2WIHWRwWor1nzGIfx4y-8TTZR1tJko03H4jWG4GeeAt_aeanjMiW-4S1133FIy0lzHyL_V8GFn1t25e3nTOszV-x9t32r91nz8vRcb5pskEqkzHVodEVOatFXArG32vWkENCDIIdKOXRV0TlXOAsobNmpwrpeWzDGe1ms2N1pdyCiwxSHLxuXw_lj8QvSOExq |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CSF54842.2022.9919671 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665484176 1665484179 |
EndPage | 242 |
ExternalDocumentID | 9919671 |
Genre | orig-research |
GrantInformation_xml | – fundername: University of Edinburgh funderid: 10.13039/501100000848 – fundername: Microsoft Research funderid: 10.13039/100006112 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i250t-bc7968eb260d8077da6bde5717f10eb755b7b83cbb3ba170a4c53abd6a199ff23 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i250t-bc7968eb260d8077da6bde5717f10eb755b7b83cbb3ba170a4c53abd6a199ff23 |
OpenAccessLink | https://hdl.handle.net/20.500.11820/2ef063ab-4b04-4b83-8af2-f750b1331ce9 |
PageCount | 16 |
ParticipantIDs | ieee_primary_9919671 |
PublicationCentury | 2000 |
PublicationDate | 2022-Aug. |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug. |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE 35th Computer Security Foundations Symposium (CSF) |
PublicationTitleAbbrev | CSF |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.205566 |
Snippet | Machine-checked cryptography aims to reinforce confidence in the primitives and protocols that underpin all digital security. However, machine-checked proof... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 227 |
SubjectTerms | authenticated encryption Cognition computer aided cryptography Computer security Encryption Modular construction non-interactive key exchange Protocols Public key |
Title | Bringing State-Separating Proofs to EasyCrypt A Security Proof for Cryptobox |
URI | https://ieeexplore.ieee.org/document/9919671 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J08qrfhNDh7dbTbZJJujlpYiVoRa6K0kmyyI0C11F6y_3kl2rSgehBxCEkiYgcybZN4MQtckldpwKiNZ-KTaVHG4B1kSUcYdM0RrGSrPTR_FZJ7eL_iig252XBjnXAg-c7Hvhr98W-a1fyobAJZRwhPG98Bxa7haLSknIWownI0BfqeeXUVp3K79UTQl2IzxAZp-7daEirzGdWXi_ONXIsb_HucQ9b_ZefhpZ3eOUMeteujhzj_QQcMBPkYz1yT1hgFYC5YOVyUe6bftcLNdV_gWz9rCdc00BuyKw1Rpyvc-mo9Hz8NJ1FZKiF4AwlSRyaUSGTjJgtiMSGm1MNZxkHOREGck50aajOXGMKMTSXSac6aNFTpRqigoO0bdVblyJwjbhHmfAoBRTlPQb5ZZqcCpACQnaMHVKep5SSzXTTKMZSuEs7-Hz9G-10YTMXeButWmdpdgxStzFdT3CaBDnac |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHvSksom_zcGj7dKkaZqjDsfUbQjbYLeRNCmIsI7ZgfOv9yWtE8WD0ENJAinvQb_vJe97D6FrEgulORWByF1RbSo5_AdZFFDGLdNEKeE7zw1HSX8aP874rIFutloYa61PPrOhe_V3-abI1u6orANcRiZOML4DuM-jSq1Vy3IiIjvdcQ8IeOz0VZSG9eofbVM8avT20fBrvypZ5DVclzrMPn6VYvzvBx2g9rc-Dz9vkecQNeyihQZ37ogOHuwJZDC2VVlvGIC1gHW4LPC9ett0V5tliW_xuG5dV01jYK_YTxW6eG-jae9-0u0Hda-E4AVITBnoTMgkhTA5ISYlQhiVaGM5WDqPiNWCcy10yjKtmVaRICrOOFPaJCqSMs8pO0LNRbGwxwibiLmoAqhRRmPwcJoaISGsAC6X0JzLE9Rylpgvq3IY89oIp38PX6Hd_mQ4mA8eRk9naM95psqfO0fNcrW2F4Dppb70rvwECfWg8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+35th+Computer+Security+Foundations+Symposium+%28CSF%29&rft.atitle=Bringing+State-Separating+Proofs+to+EasyCrypt+A+Security+Proof+for+Cryptobox&rft.au=Dupressoir%2C+Francois&rft.au=Kohbrok%2C+Konrad&rft.au=Oechsner%2C+Sabine&rft.date=2022-08-01&rft.pub=IEEE&rft.spage=227&rft.epage=242&rft_id=info:doi/10.1109%2FCSF54842.2022.9919671&rft.externalDocID=9919671 |