New Applications of Late Fusion Methods for EEG Signal Processing
Decision fusion consists in the combination of the outputs of multiple classifiers into a common decision that is more precise or stable. In most cases, however, only classical fusion techniques are considered. This work compares the performance of several state-of-the-art fusion methods on new appl...
Saved in:
Published in | 2019 International Conference on Computational Science and Computational Intelligence (CSCI) pp. 617 - 621 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Decision fusion consists in the combination of the outputs of multiple classifiers into a common decision that is more precise or stable. In most cases, however, only classical fusion techniques are considered. This work compares the performance of several state-of-the-art fusion methods on new applications of automatic stage classification of several neuropsychological tests. The tests were staged into three classes: stimulus display, retention interval, and subject response. The considered late fusion methods were: alpha integration; copulas; Dempster-Shafer combination; independent component analysis mixture models; and behavior knowledge space. Late fusion was able to improve the performance for the task, with alpha integration yielding the most stable result. |
---|---|
DOI: | 10.1109/CSCI49370.2019.00116 |