EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers

Fully immersive experiences in AR/VR depend on re-constructing the full body pose of the user without restricting their motion. In this paper we study the use of body-worn electromagnetic (EM) field-based sensing for the task of 3D human pose reconstruction. To this end, we present a method to estim...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 11490 - 11500
Main Authors Kaufmann, Manuel, Zhao, Yi, Tang, Chengcheng, Tao, Lingling, Twigg, Christopher, Song, Jie, Wang, Robert, Hilliges, Otmar
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fully immersive experiences in AR/VR depend on re-constructing the full body pose of the user without restricting their motion. In this paper we study the use of body-worn electromagnetic (EM) field-based sensing for the task of 3D human pose reconstruction. To this end, we present a method to estimate SMPL parameters from 6-12 EM sensors. We leverage a customized wearable system consisting of wireless EM sensors measuring time-synchronized 6D poses at 120 Hz. To provide accurate poses even with little user instrumentation, we adopt a recently proposed hybrid framework, learned gradient descent (LGD), to iteratively estimate SMPL pose and shape from our input measurements. This allows us to harness powerful pose priors to cope with the idiosyncrasies of the input data and achieve accurate pose estimates. The proposed method uses AMASS to synthesize virtual EM-sensor data and we show that it generalizes well to a newly captured real dataset consisting of a total of 36 minutes of motion from 5 subjects. We achieve reconstruction errors as low as 31.8 mm and 13.3 degrees, outperforming both pure learning- and pure optimization-based methods. Code and data is available under https://ait.ethz.ch/projects/2021/em-pose.
AbstractList Fully immersive experiences in AR/VR depend on re-constructing the full body pose of the user without restricting their motion. In this paper we study the use of body-worn electromagnetic (EM) field-based sensing for the task of 3D human pose reconstruction. To this end, we present a method to estimate SMPL parameters from 6-12 EM sensors. We leverage a customized wearable system consisting of wireless EM sensors measuring time-synchronized 6D poses at 120 Hz. To provide accurate poses even with little user instrumentation, we adopt a recently proposed hybrid framework, learned gradient descent (LGD), to iteratively estimate SMPL pose and shape from our input measurements. This allows us to harness powerful pose priors to cope with the idiosyncrasies of the input data and achieve accurate pose estimates. The proposed method uses AMASS to synthesize virtual EM-sensor data and we show that it generalizes well to a newly captured real dataset consisting of a total of 36 minutes of motion from 5 subjects. We achieve reconstruction errors as low as 31.8 mm and 13.3 degrees, outperforming both pure learning- and pure optimization-based methods. Code and data is available under https://ait.ethz.ch/projects/2021/em-pose.
Author Song, Jie
Twigg, Christopher
Zhao, Yi
Wang, Robert
Hilliges, Otmar
Kaufmann, Manuel
Tao, Lingling
Tang, Chengcheng
Author_xml – sequence: 1
  givenname: Manuel
  surname: Kaufmann
  fullname: Kaufmann, Manuel
  organization: ETH Zürich,Department of Computer Science
– sequence: 2
  givenname: Yi
  surname: Zhao
  fullname: Zhao, Yi
  organization: Facebook Reality Labs
– sequence: 3
  givenname: Chengcheng
  surname: Tang
  fullname: Tang, Chengcheng
  organization: Facebook Reality Labs
– sequence: 4
  givenname: Lingling
  surname: Tao
  fullname: Tao, Lingling
  organization: Facebook Reality Labs
– sequence: 5
  givenname: Christopher
  surname: Twigg
  fullname: Twigg, Christopher
  organization: Facebook Reality Labs
– sequence: 6
  givenname: Jie
  surname: Song
  fullname: Song, Jie
  organization: ETH Zürich,Department of Computer Science
– sequence: 7
  givenname: Robert
  surname: Wang
  fullname: Wang, Robert
  organization: Facebook Reality Labs
– sequence: 8
  givenname: Otmar
  surname: Hilliges
  fullname: Hilliges, Otmar
  organization: ETH Zürich,Department of Computer Science
BookMark eNotj8FOg0AURUejiW3tF-hifgB8b4ZhGHcGqW1S0yatbpsHvDFogQZw0b8Xo6ubexcn90zFVdM2LMQ9QogI7mGVpu9R4pQKFSgMAVHjhZg7m2Acm0glqMylmCidQGANRDdi2vefANqpJJ6IRfYabDe77FHqZ7n8rqmR27ZnmfVDVdNQtY30XVvL3Ym63_nIxTB2-mh4qAq576j44q6_Fdeejj3P_3Mm3hbZPl0G683LKn1aB5WK3BAUiYaSvY8jMLlBYrKacnQxgbcUeW0KB-XoxUblxmkqnbWlB6Mo9zGjnom7P27FzIdTN37szgdnEeyo9ANvn00M
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV48922.2021.01131
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665428125
1665428120
EISSN 2380-7504
EndPage 11500
ExternalDocumentID 9710700
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i249t-c830deff6405b51aea73ab196a0f7a4f35c90d110e52b593ad977df052abf6e13
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i249t-c830deff6405b51aea73ab196a0f7a4f35c90d110e52b593ad977df052abf6e13
OpenAccessLink http://hdl.handle.net/20.500.11850/517563
PageCount 11
ParticipantIDs ieee_primary_9710700
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.2914717
Snippet Fully immersive experiences in AR/VR depend on re-constructing the full body pose of the user without restricting their motion. In this paper we study the use...
SourceID ieee
SourceType Publisher
StartPage 11490
SubjectTerms 3D from multiview and other sensors
Gestures and body pose
Motion and tracking
Sensor systems
Shape
Shape measurement
Stereo
Three-dimensional displays
Tracking
Wireless communication
Wireless sensor networks
Title EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers
URI https://ieeexplore.ieee.org/document/9710700
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhx6nw4iVlLqoJUqFSKulV2fEYIkVY0Xfj1nJNQEGJgiyxFse58effsez5CLlVsFAgtmLA6YZHvSyYTHTAdKB2Db4JcO-3w-D4ezaK7uZi3yNVWCwMAVfEZeO6xOss3y3zjtsr6EuEw4UjQd5C41Vqtr78uwnwaN9I4n8v-7WDwFKUycFqrwPdwFbs2cj8aqFT4MeyQ8deX67KRV29Tai__-HUp43-ntkd630o9Otli0D5pQXFAOk1qSZvAXXfJMBuzycM0u6bhDa027ulkuQaaYYTX4kXqhCZ0ukKii8N1c5w39Vw4kSNFRHPlF-semQ2zx8GINS0U2AvyqpLlacgNWBtjXqaFr0AlodIYdYrbREU2FLnkBi0GItBChspgPmgsF-gqi74KD0m7WBZwRKiKI0jwzTTMeaQsyASsksYqTGFypCXHpOvMsljVt2QsGouc_D18SnadY-qyuDPSLt83cI7wXuqLyq-fTwKlPA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2VcoATu9jxAY4piRMnNRKnLmqhhUq0iFuxkzFCiBbRVgi-hV_h3xgnaUGIKxK3yFIiOzOZ9yae5wE4VGGiUGjhCKMjJ_A86chIc0dzpUP0Eh5rqx1uX4SNXnB2I24K8D7TwiBiWnyGJXuZ7uUnw3hif5UdS4LDyHXzEspzfH2hBG102qySNY84r9e6lYaT9xBw7imxGDtx2XcTNCYkYqKFp1BFvtLkdso1kQqML2LpJoSBKLgW0lcJEaLEuILmamiyPj13DuaJZwieqcOmcZ6IRTnMxXieK4-blcp1UJbcqru4V6Lvxjau-9ayJUWs-hJ8TNeaFao8lCZjXYrffhwD-V9fxjKsf2kRWWeGsitQwMEqLOXkmeWhabQG9Vrb6Vxe1U6YX2Xp1gTrDEfIahTDMnkms1IadvVEqTwNZ-1_HtXdwMo4GWG2LTAZrUPvT9a0AcXBcICbwFQYYER3lv3YDZRBGaFRMjGKSFpMidcWrFkz9J-yc0D6uQW2fx8-gIVGt93qt5oX5zuwaJ0iKwLcheL4eYJ7RGbGej_1KQa3f223TxlRBAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=EM-POSE%3A+3D+Human+Pose+Estimation+from+Sparse+Electromagnetic+Trackers&rft.au=Kaufmann%2C+Manuel&rft.au=Zhao%2C+Yi&rft.au=Tang%2C+Chengcheng&rft.au=Tao%2C+Lingling&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=11490&rft.epage=11500&rft_id=info:doi/10.1109%2FICCV48922.2021.01131&rft.externalDocID=9710700