EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers
Fully immersive experiences in AR/VR depend on re-constructing the full body pose of the user without restricting their motion. In this paper we study the use of body-worn electromagnetic (EM) field-based sensing for the task of 3D human pose reconstruction. To this end, we present a method to estim...
Saved in:
Published in | Proceedings / IEEE International Conference on Computer Vision pp. 11490 - 11500 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fully immersive experiences in AR/VR depend on re-constructing the full body pose of the user without restricting their motion. In this paper we study the use of body-worn electromagnetic (EM) field-based sensing for the task of 3D human pose reconstruction. To this end, we present a method to estimate SMPL parameters from 6-12 EM sensors. We leverage a customized wearable system consisting of wireless EM sensors measuring time-synchronized 6D poses at 120 Hz. To provide accurate poses even with little user instrumentation, we adopt a recently proposed hybrid framework, learned gradient descent (LGD), to iteratively estimate SMPL pose and shape from our input measurements. This allows us to harness powerful pose priors to cope with the idiosyncrasies of the input data and achieve accurate pose estimates. The proposed method uses AMASS to synthesize virtual EM-sensor data and we show that it generalizes well to a newly captured real dataset consisting of a total of 36 minutes of motion from 5 subjects. We achieve reconstruction errors as low as 31.8 mm and 13.3 degrees, outperforming both pure learning- and pure optimization-based methods. Code and data is available under https://ait.ethz.ch/projects/2021/em-pose. |
---|---|
AbstractList | Fully immersive experiences in AR/VR depend on re-constructing the full body pose of the user without restricting their motion. In this paper we study the use of body-worn electromagnetic (EM) field-based sensing for the task of 3D human pose reconstruction. To this end, we present a method to estimate SMPL parameters from 6-12 EM sensors. We leverage a customized wearable system consisting of wireless EM sensors measuring time-synchronized 6D poses at 120 Hz. To provide accurate poses even with little user instrumentation, we adopt a recently proposed hybrid framework, learned gradient descent (LGD), to iteratively estimate SMPL pose and shape from our input measurements. This allows us to harness powerful pose priors to cope with the idiosyncrasies of the input data and achieve accurate pose estimates. The proposed method uses AMASS to synthesize virtual EM-sensor data and we show that it generalizes well to a newly captured real dataset consisting of a total of 36 minutes of motion from 5 subjects. We achieve reconstruction errors as low as 31.8 mm and 13.3 degrees, outperforming both pure learning- and pure optimization-based methods. Code and data is available under https://ait.ethz.ch/projects/2021/em-pose. |
Author | Song, Jie Twigg, Christopher Zhao, Yi Wang, Robert Hilliges, Otmar Kaufmann, Manuel Tao, Lingling Tang, Chengcheng |
Author_xml | – sequence: 1 givenname: Manuel surname: Kaufmann fullname: Kaufmann, Manuel organization: ETH Zürich,Department of Computer Science – sequence: 2 givenname: Yi surname: Zhao fullname: Zhao, Yi organization: Facebook Reality Labs – sequence: 3 givenname: Chengcheng surname: Tang fullname: Tang, Chengcheng organization: Facebook Reality Labs – sequence: 4 givenname: Lingling surname: Tao fullname: Tao, Lingling organization: Facebook Reality Labs – sequence: 5 givenname: Christopher surname: Twigg fullname: Twigg, Christopher organization: Facebook Reality Labs – sequence: 6 givenname: Jie surname: Song fullname: Song, Jie organization: ETH Zürich,Department of Computer Science – sequence: 7 givenname: Robert surname: Wang fullname: Wang, Robert organization: Facebook Reality Labs – sequence: 8 givenname: Otmar surname: Hilliges fullname: Hilliges, Otmar organization: ETH Zürich,Department of Computer Science |
BookMark | eNotj8FOg0AURUejiW3tF-hifgB8b4ZhGHcGqW1S0yatbpsHvDFogQZw0b8Xo6ubexcn90zFVdM2LMQ9QogI7mGVpu9R4pQKFSgMAVHjhZg7m2Acm0glqMylmCidQGANRDdi2vefANqpJJ6IRfYabDe77FHqZ7n8rqmR27ZnmfVDVdNQtY30XVvL3Ym63_nIxTB2-mh4qAq576j44q6_Fdeejj3P_3Mm3hbZPl0G683LKn1aB5WK3BAUiYaSvY8jMLlBYrKacnQxgbcUeW0KB-XoxUblxmkqnbWlB6Mo9zGjnom7P27FzIdTN37szgdnEeyo9ANvn00M |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV48922.2021.01131 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781665428125 1665428120 |
EISSN | 2380-7504 |
EndPage | 11500 |
ExternalDocumentID | 9710700 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i249t-c830deff6405b51aea73ab196a0f7a4f35c90d110e52b593ad977df052abf6e13 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i249t-c830deff6405b51aea73ab196a0f7a4f35c90d110e52b593ad977df052abf6e13 |
OpenAccessLink | http://hdl.handle.net/20.500.11850/517563 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9710700 |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct. |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct. |
PublicationDecade | 2020 |
PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.2914717 |
Snippet | Fully immersive experiences in AR/VR depend on re-constructing the full body pose of the user without restricting their motion. In this paper we study the use... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 11490 |
SubjectTerms | 3D from multiview and other sensors Gestures and body pose Motion and tracking Sensor systems Shape Shape measurement Stereo Three-dimensional displays Tracking Wireless communication Wireless sensor networks |
Title | EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers |
URI | https://ieeexplore.ieee.org/document/9710700 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhx6nw4iVlLqoJUqFSKulV2fEYIkVY0Xfj1nJNQEGJgiyxFse58effsez5CLlVsFAgtmLA6YZHvSyYTHTAdKB2Db4JcO-3w-D4ezaK7uZi3yNVWCwMAVfEZeO6xOss3y3zjtsr6EuEw4UjQd5C41Vqtr78uwnwaN9I4n8v-7WDwFKUycFqrwPdwFbs2cj8aqFT4MeyQ8deX67KRV29Tai__-HUp43-ntkd630o9Otli0D5pQXFAOk1qSZvAXXfJMBuzycM0u6bhDa027ulkuQaaYYTX4kXqhCZ0ukKii8N1c5w39Vw4kSNFRHPlF-semQ2zx8GINS0U2AvyqpLlacgNWBtjXqaFr0AlodIYdYrbREU2FLnkBi0GItBChspgPmgsF-gqi74KD0m7WBZwRKiKI0jwzTTMeaQsyASsksYqTGFypCXHpOvMsljVt2QsGouc_D18SnadY-qyuDPSLt83cI7wXuqLyq-fTwKlPA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2VcoATu9jxAY4piRMnNRKnLmqhhUq0iFuxkzFCiBbRVgi-hV_h3xgnaUGIKxK3yFIiOzOZ9yae5wE4VGGiUGjhCKMjJ_A86chIc0dzpUP0Eh5rqx1uX4SNXnB2I24K8D7TwiBiWnyGJXuZ7uUnw3hif5UdS4LDyHXzEspzfH2hBG102qySNY84r9e6lYaT9xBw7imxGDtx2XcTNCYkYqKFp1BFvtLkdso1kQqML2LpJoSBKLgW0lcJEaLEuILmamiyPj13DuaJZwieqcOmcZ6IRTnMxXieK4-blcp1UJbcqru4V6Lvxjau-9ayJUWs-hJ8TNeaFao8lCZjXYrffhwD-V9fxjKsf2kRWWeGsitQwMEqLOXkmeWhabQG9Vrb6Vxe1U6YX2Xp1gTrDEfIahTDMnkms1IadvVEqTwNZ-1_HtXdwMo4GWG2LTAZrUPvT9a0AcXBcICbwFQYYER3lv3YDZRBGaFRMjGKSFpMidcWrFkz9J-yc0D6uQW2fx8-gIVGt93qt5oX5zuwaJ0iKwLcheL4eYJ7RGbGej_1KQa3f223TxlRBAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=EM-POSE%3A+3D+Human+Pose+Estimation+from+Sparse+Electromagnetic+Trackers&rft.au=Kaufmann%2C+Manuel&rft.au=Zhao%2C+Yi&rft.au=Tang%2C+Chengcheng&rft.au=Tao%2C+Lingling&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=11490&rft.epage=11500&rft_id=info:doi/10.1109%2FICCV48922.2021.01131&rft.externalDocID=9710700 |