Deepfake Video Detection through Optical Flow Based CNN

Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may c...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Computer Vision workshops pp. 1205 - 1207
Main Authors Amerini, Irene, Galteri, Leonardo, Caldelli, Roberto, Del Bimbo, Alberto
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may constitute a serious threat to attack the reputation of public subjects or to address the general opinion on a certain event. According to this, being able to individuate this kind of fake information becomes fundamental. In this work, a new forensic technique able to discern between fake and original video sequences is given; unlike other state-of-the-art methods which resorts at single video frames, we propose the adoption of optical flow fields to exploit possible inter-frame dissimilarities. Such a clue is then used as feature to be learned by CNN classifiers. Preliminary results obtained on FaceForensics++ dataset highlight very promising performances.
AbstractList Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may constitute a serious threat to attack the reputation of public subjects or to address the general opinion on a certain event. According to this, being able to individuate this kind of fake information becomes fundamental. In this work, a new forensic technique able to discern between fake and original video sequences is given; unlike other state-of-the-art methods which resorts at single video frames, we propose the adoption of optical flow fields to exploit possible inter-frame dissimilarities. Such a clue is then used as feature to be learned by CNN classifiers. Preliminary results obtained on FaceForensics++ dataset highlight very promising performances.
Author Del Bimbo, Alberto
Galteri, Leonardo
Amerini, Irene
Caldelli, Roberto
Author_xml – sequence: 1
  givenname: Irene
  surname: Amerini
  fullname: Amerini, Irene
  organization: University of Florence, Italy
– sequence: 2
  givenname: Leonardo
  surname: Galteri
  fullname: Galteri, Leonardo
  organization: University of Florence, Italy
– sequence: 3
  givenname: Roberto
  surname: Caldelli
  fullname: Caldelli, Roberto
  organization: National Inter-University Consortium for Telecommunications, Italy
– sequence: 4
  givenname: Alberto
  surname: Del Bimbo
  fullname: Del Bimbo, Alberto
  organization: University of Florence, Italy
BookMark eNotj09LwzAcQCO4g87dBS_5Aq355U-THDVzOhjbRbfjSJNfXbA2pauI396Cnt7hwYN3TS673CEht8BKAGbv187tDyVnYEvGQPELsrDagOYGFOPCXhG9ROwb_4F0nyJmusQRw5hyR8fTkL_eT3TXjyn4lq7a_E0f_RkjddvtDZk1vj3j4p9z8rZ6enUvxWb3vHYPmyJxqcYiWGahERVWLIgqygCG61qAkFoLU9dG-SBN5CEKBK21FJbFisEkpwHOxZzc_XUTIh77IX364edoJ6WUEb_9dkCN
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCVW.2019.00152
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728150239
172815023X
EndPage 1207
ExternalDocumentID 9022558
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i245t-c9091f36e60c36d4c1827b31347738bb85ac48d2cd3e17774390d601738110223
IEDL.DBID RIE
IngestDate Wed Aug 27 02:44:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i245t-c9091f36e60c36d4c1827b31347738bb85ac48d2cd3e17774390d601738110223
OpenAccessLink http://hdl.handle.net/11573/1326326
PageCount 3
ParticipantIDs ieee_primary_9022558
PublicationCentury 2000
PublicationDate 2019-Oct
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct
PublicationDecade 2010
PublicationTitle IEEE International Conference on Computer Vision workshops
PublicationTitleAbbrev ICCVW
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.29002
Snippet Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based...
SourceID ieee
SourceType Publisher
StartPage 1205
SubjectTerms CNN
Computer vision
Conferences
Deepfake
Integrated optics
Media
Optical flow
Optical imaging
Optical network units
Optical saturation
Video forensics
Title Deepfake Video Detection through Optical Flow Based CNN
URI https://ieeexplore.ieee.org/document/9022558
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP0CnDyhgvF3evDoYKztflwdEjQBPQhyI2v7LSGYbcERE_96226gMR7caVmzbGnTvL72ve8B3OhFm4uMJQ5GUjmMC-YIL-FGRZhiGtKU29C-ydQfz9jjgi8acLv3wiCiFZ9hz9zas3yVy63ZKutHGnA4D5vQ1MSt8mrtTh7dqP8Qx_NXI9ayFSiNk-hHXoqFi1EbJrsPVSqRdW9bip78_FWD8b9_cgjdb2Meed5DzhE0MDuGdr2SJPU8fe9AMEQs0mSNZL5SmJMhllZylZE6l4c8FXYTm4ze8g9yp6FMkXg67cJsdP8Sj506IsFZeYyXjow03qfUR9-V1FdMaroQCGr8oQENhQh5IlmoPKkoDoLAsA9XaQ6mGweG69ETaGV5hqdAuNSv6SuKAskS1w-p8lylTDixnrRKnUHH9MOyqKpgLOsuOP_78QUcmJGoZG-X0Co3W7zS8F2KaztuXx7pmP4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjg0Hb_bg6JKAwPQByI1v7lhDMRnTExL_ethtojAd7WtosW17TfH3t970P4EZt2mxkLLLQF9JiPGZW3Im4ZhEmmHg04ca0bxQ6_Ql7mPFZBW63WhhENOQzbOpHc5cvM7HWR2UtXwEO594O7Crc5-1CrbW5e7T91iAIpi-armVqUGot0Q_HFAMYvRqMNp8qeCLL5jqPm-LzVxXG__7LATS-pXnkeQs6h1DB9Ahq5V6SlCv1vQ5uF3GVREsk04XEjHQxN6SrlJTOPORpZY6xSe81-yB3CswkCcKwAZPe_TjoW6VJgrXoMJ5bwleIn1AHHVtQRzKhEgY3ploh6lIvjj0eCebJjpAU266r8w9bqixMDbZ1tkePoZpmKZ4A4UK9pprvu4JFtuNR2bGl1PbEatlKeQp1HYf5qqiDMS9DcPZ39zXs9cej4Xw4CB_PYV_PSkGCu4Bq_rbGSwXmeXxl5vALT_GcRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computer+Vision+workshops&rft.atitle=Deepfake+Video+Detection+through+Optical+Flow+Based+CNN&rft.au=Amerini%2C+Irene&rft.au=Galteri%2C+Leonardo&rft.au=Caldelli%2C+Roberto&rft.au=Del+Bimbo%2C+Alberto&rft.date=2019-10-01&rft.pub=IEEE&rft.spage=1205&rft.epage=1207&rft_id=info:doi/10.1109%2FICCVW.2019.00152&rft.externalDocID=9022558