Deepfake Video Detection through Optical Flow Based CNN
Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may c...
Saved in:
Published in | IEEE International Conference on Computer Vision workshops pp. 1205 - 1207 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may constitute a serious threat to attack the reputation of public subjects or to address the general opinion on a certain event. According to this, being able to individuate this kind of fake information becomes fundamental. In this work, a new forensic technique able to discern between fake and original video sequences is given; unlike other state-of-the-art methods which resorts at single video frames, we propose the adoption of optical flow fields to exploit possible inter-frame dissimilarities. Such a clue is then used as feature to be learned by CNN classifiers. Preliminary results obtained on FaceForensics++ dataset highlight very promising performances. |
---|---|
AbstractList | Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may constitute a serious threat to attack the reputation of public subjects or to address the general opinion on a certain event. According to this, being able to individuate this kind of fake information becomes fundamental. In this work, a new forensic technique able to discern between fake and original video sequences is given; unlike other state-of-the-art methods which resorts at single video frames, we propose the adoption of optical flow fields to exploit possible inter-frame dissimilarities. Such a clue is then used as feature to be learned by CNN classifiers. Preliminary results obtained on FaceForensics++ dataset highlight very promising performances. |
Author | Del Bimbo, Alberto Galteri, Leonardo Amerini, Irene Caldelli, Roberto |
Author_xml | – sequence: 1 givenname: Irene surname: Amerini fullname: Amerini, Irene organization: University of Florence, Italy – sequence: 2 givenname: Leonardo surname: Galteri fullname: Galteri, Leonardo organization: University of Florence, Italy – sequence: 3 givenname: Roberto surname: Caldelli fullname: Caldelli, Roberto organization: National Inter-University Consortium for Telecommunications, Italy – sequence: 4 givenname: Alberto surname: Del Bimbo fullname: Del Bimbo, Alberto organization: University of Florence, Italy |
BookMark | eNotj09LwzAcQCO4g87dBS_5Aq355U-THDVzOhjbRbfjSJNfXbA2pauI396Cnt7hwYN3TS673CEht8BKAGbv187tDyVnYEvGQPELsrDagOYGFOPCXhG9ROwb_4F0nyJmusQRw5hyR8fTkL_eT3TXjyn4lq7a_E0f_RkjddvtDZk1vj3j4p9z8rZ6enUvxWb3vHYPmyJxqcYiWGahERVWLIgqygCG61qAkFoLU9dG-SBN5CEKBK21FJbFisEkpwHOxZzc_XUTIh77IX364edoJ6WUEb_9dkCN |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCVW.2019.00152 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781728150239 172815023X |
EndPage | 1207 |
ExternalDocumentID | 9022558 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i245t-c9091f36e60c36d4c1827b31347738bb85ac48d2cd3e17774390d601738110223 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:44:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i245t-c9091f36e60c36d4c1827b31347738bb85ac48d2cd3e17774390d601738110223 |
OpenAccessLink | http://hdl.handle.net/11573/1326326 |
PageCount | 3 |
ParticipantIDs | ieee_primary_9022558 |
PublicationCentury | 2000 |
PublicationDate | 2019-Oct |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-Oct |
PublicationDecade | 2010 |
PublicationTitle | IEEE International Conference on Computer Vision workshops |
PublicationTitleAbbrev | ICCVW |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.29002 |
Snippet | Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1205 |
SubjectTerms | CNN Computer vision Conferences Deepfake Integrated optics Media Optical flow Optical imaging Optical network units Optical saturation Video forensics |
Title | Deepfake Video Detection through Optical Flow Based CNN |
URI | https://ieeexplore.ieee.org/document/9022558 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP0CnDyhgvF3evDoYKztflwdEjQBPQhyI2v7LSGYbcERE_96226gMR7caVmzbGnTvL72ve8B3OhFm4uMJQ5GUjmMC-YIL-FGRZhiGtKU29C-ydQfz9jjgi8acLv3wiCiFZ9hz9zas3yVy63ZKutHGnA4D5vQ1MSt8mrtTh7dqP8Qx_NXI9ayFSiNk-hHXoqFi1EbJrsPVSqRdW9bip78_FWD8b9_cgjdb2Meed5DzhE0MDuGdr2SJPU8fe9AMEQs0mSNZL5SmJMhllZylZE6l4c8FXYTm4ze8g9yp6FMkXg67cJsdP8Sj506IsFZeYyXjow03qfUR9-V1FdMaroQCGr8oQENhQh5IlmoPKkoDoLAsA9XaQ6mGweG69ETaGV5hqdAuNSv6SuKAskS1w-p8lylTDixnrRKnUHH9MOyqKpgLOsuOP_78QUcmJGoZG-X0Co3W7zS8F2KaztuXx7pmP4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjg0Hb_bg6JKAwPQByI1v7lhDMRnTExL_ethtojAd7WtosW17TfH3t970P4EZt2mxkLLLQF9JiPGZW3Im4ZhEmmHg04ca0bxQ6_Ql7mPFZBW63WhhENOQzbOpHc5cvM7HWR2UtXwEO594O7Crc5-1CrbW5e7T91iAIpi-armVqUGot0Q_HFAMYvRqMNp8qeCLL5jqPm-LzVxXG__7LATS-pXnkeQs6h1DB9Ahq5V6SlCv1vQ5uF3GVREsk04XEjHQxN6SrlJTOPORpZY6xSe81-yB3CswkCcKwAZPe_TjoW6VJgrXoMJ5bwleIn1AHHVtQRzKhEgY3ploh6lIvjj0eCebJjpAU266r8w9bqixMDbZ1tkePoZpmKZ4A4UK9pprvu4JFtuNR2bGl1PbEatlKeQp1HYf5qqiDMS9DcPZ39zXs9cej4Xw4CB_PYV_PSkGCu4Bq_rbGSwXmeXxl5vALT_GcRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computer+Vision+workshops&rft.atitle=Deepfake+Video+Detection+through+Optical+Flow+Based+CNN&rft.au=Amerini%2C+Irene&rft.au=Galteri%2C+Leonardo&rft.au=Caldelli%2C+Roberto&rft.au=Del+Bimbo%2C+Alberto&rft.date=2019-10-01&rft.pub=IEEE&rft.spage=1205&rft.epage=1207&rft_id=info:doi/10.1109%2FICCVW.2019.00152&rft.externalDocID=9022558 |