Hybrid Visualization of Sparse Point-Based Data Using GPGPU
Direct point-based rendering is a popular method in scientific visualization, since the number of point-based datasets increased dramatically in the past few years. At the same time, rendering of point primitives is becoming less efficient as the data size increases. Point splatting, volume-based re...
Saved in:
Published in | 2014 Second International Symposium on Computing and Networking pp. 178 - 184 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-1888 |
DOI | 10.1109/CANDAR.2014.76 |
Cover
Abstract | Direct point-based rendering is a popular method in scientific visualization, since the number of point-based datasets increased dramatically in the past few years. At the same time, rendering of point primitives is becoming less efficient as the data size increases. Point splatting, volume-based rendering, or is surface extraction are well-known approaches that can be utilized. Unfortunately, high visual accuracy is often sacrificed. Furthermore, unstructured sparse point-based data is more difficult to visualize, since no surface geometry and topology can be implicitly defined. This paper introduces a novel hybrid visualization method that utilizes point-based and volume-based rendering of sparse point-based data. The visualization is done entirely with a custom rendering pipeline by using GPGPU, which provides accelerated rendering. The method achieves real-time visualization, while retaining high visual accuracy, as shown on cosmological dark matter SPH-based dataset. |
---|---|
AbstractList | Direct point-based rendering is a popular method in scientific visualization, since the number of point-based datasets increased dramatically in the past few years. At the same time, rendering of point primitives is becoming less efficient as the data size increases. Point splatting, volume-based rendering, or is surface extraction are well-known approaches that can be utilized. Unfortunately, high visual accuracy is often sacrificed. Furthermore, unstructured sparse point-based data is more difficult to visualize, since no surface geometry and topology can be implicitly defined. This paper introduces a novel hybrid visualization method that utilizes point-based and volume-based rendering of sparse point-based data. The visualization is done entirely with a custom rendering pipeline by using GPGPU, which provides accelerated rendering. The method achieves real-time visualization, while retaining high visual accuracy, as shown on cosmological dark matter SPH-based dataset. |
Author | Pelic, Denis Alik, Borut Lukac, Niko |
Author_xml | – sequence: 1 givenname: Niko surname: Lukac fullname: Lukac, Niko email: niko.lukac@um.si organization: Fac. of Electr. Eng. & Comput. Sci., Univ. of Maribor, Maribor, Slovenia – sequence: 2 givenname: Denis surname: Pelic fullname: Pelic, Denis email: denis.spelic@um.si organization: Fac. of Electr. Eng. & Comput. Sci., Univ. of Maribor, Maribor, Slovenia – sequence: 3 givenname: Borut surname: Alik fullname: Alik, Borut email: borut.zalik@um.si organization: Fac. of Electr. Eng. & Comput. Sci., Univ. of Maribor, Maribor, Slovenia |
BookMark | eNotjE9LwzAcQCNMcJu7evGSL9D6y78mwVPtZicMLbp5Hb82qURmO5p6mJ_egZ4ePHhvRiZd33lCbhikjIG9K_LnZf6acmAy1dkFmTGprZVMcT4hUy60TZgx5oosYvwEAMFBQiam5H59qofg6HuI33gIPziGvqN9S9-OOERPqz50Y_KA0Tu6xBHpLobug5ZVWe2uyWWLh-gX_5yT7eNqW6yTzUv5VOSbJHCpxsQyYZlSvGmFU8ixFtpwLUAqCYpjAx5qZRGNBWEBDXO6yc4yU85Y4cSc3P5tg_d-fxzCFw6nvT63TFvxCzZwRks |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CANDAR.2014.76 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1479941522 9781479941520 |
EndPage | 184 |
ExternalDocumentID | 7052179 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i245t-91391552cf3d5a2ab3782730454052ac0e0b59aa890390a81d7c60e065d893d3 |
IEDL.DBID | RIE |
ISSN | 2379-1888 |
IngestDate | Wed Aug 27 02:03:07 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i245t-91391552cf3d5a2ab3782730454052ac0e0b59aa890390a81d7c60e065d893d3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_7052179 |
PublicationCentury | 2000 |
PublicationDate | 2014-Dec. |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2014 Second International Symposium on Computing and Networking |
PublicationTitleAbbrev | candar |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003204063 ssj0001967840 |
Score | 1.5804327 |
Snippet | Direct point-based rendering is a popular method in scientific visualization, since the number of point-based datasets increased dramatically in the past few... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 178 |
SubjectTerms | Casting CUDA Data visualization GPGPU Graphics processing units hybrid rendering Pipelines Rendering (computer graphics) scientific visualization SVO Three-dimensional displays Visualization |
Title | Hybrid Visualization of Sparse Point-Based Data Using GPGPU |
URI | https://ieeexplore.ieee.org/document/7052179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7t2NZ1XeMJQSAmEKJguJGu7RJishEcB_3r7dsGGOPB29akTdN2e-_1fd_3ELrzAhl4UifEDw0jIOlGYs9EJOFeoCJmtObARh5PwtE8eF6wRQ3d77kwxpgCfGYceCxy-TpTW7gq63BgmnJRR3V7zEqu1uE-RdjfbqVbAu_Ut8ezKKTmUy6IZyO9SrPRc0Wn1530uy-A7AockBv5UVmlMCyDJhrvplTiSd6dbR476uuXWuN_53yM2gcKH57ujdMJqpn0FDV3NRxw9Um30MPoEzhb-G31AfTKkpSJswS_rm3Ia8fIVmlOHq2t07gvc4kLjAEeTofTeRvNBk-z3ohUBRXIyg9YDll2kIP3VUI1k76MqfUPOC1U-JgvlWvcmAkpI-FS4UrrynIV2saQaevWaHqGGmmWmnOEuYCEmw3lFI0CabvZwRjTMvRirlQiL1ALlmK5LiUzltUqXP7dfIWOYCdKlMg1auSbrbmxtj6Pb4tN_gYY6qPx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_BoYVvbdY0nBGEqEKJgvJGu7RJishEdB_3rbbcBxnjwtjVZ07Rr33t93_c9AK5cIogrVIw8X1NkJd1Q5OoAxcwlMqBaKWbZyMORH07Jwyt9rYDrNRdGa52Dz3TTPua5fJXKpb0qazHLNGV8C2wbu09owdba3Khwc_CWyiX2HXvmB81LqXmYceSaWK9UbXQd3uq0R932k8V2kaYVHPlRWyU3Lb0aGK4GVSBK3prLLGrKr196jf8d9R5obEh8cLw2T_ugopMDUFtVcYDlpq6Dm_DTsrbgy_zDEiwLWiZMY_i8MEGv6SOdJxm6NdZOwa7IBMxRBrA_7o-nDTDp3U06ISpLKqC5R2hm8-xWEN6TMVZUeCLCxkNgONfho56QjnYiyoUIuIO5I4wzy6RvGn2qjGOj8CGoJmmijwBk3KbcTDAncUCE-cx0RqkSvhsxKWNxDOp2KmaLQjRjVs7Cyd_Nl2AnnAwHs8H96PEU7NpVKTAjZ6CavS_1ubH8WXSRL_g35nSnPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Second+International+Symposium+on+Computing+and+Networking&rft.atitle=Hybrid+Visualization+of+Sparse+Point-Based+Data+Using+GPGPU&rft.au=Lukac%2C+Niko&rft.au=Pelic%2C+Denis&rft.au=Alik%2C+Borut&rft.date=2014-12-01&rft.pub=IEEE&rft.issn=2379-1888&rft.spage=178&rft.epage=184&rft_id=info:doi/10.1109%2FCANDAR.2014.76&rft.externalDocID=7052179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-1888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-1888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-1888&client=summon |