Parametric Object Motion from Blur
Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that allows to compute the motion of objects from a single image. Drawing on the success of joint segmentation and parametric motion models in the c...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1846 - 1854 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that allows to compute the motion of objects from a single image. Drawing on the success of joint segmentation and parametric motion models in the context of optical flow estimation, we propose a parametric object motion model combined with a segmentation mask to exploit localized, non-uniform motion blur. Our parametric image formation model is differentiable w.r.t. the motion parameters, which enables us to generalize marginal-likelihood techniques from uniform blind deblurring to localized, non-uniform blur. A two-stage pipeline, first in derivative space and then in image space, allows to estimate both parametric object motion as well as a motion segmentation from a single image alone. Our experiments demonstrate its ability to cope with very challenging cases of object motion blur. |
---|---|
AbstractList | Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that allows to compute the motion of objects from a single image. Drawing on the success of joint segmentation and parametric motion models in the context of optical flow estimation, we propose a parametric object motion model combined with a segmentation mask to exploit localized, non-uniform motion blur. Our parametric image formation model is differentiable w.r.t. the motion parameters, which enables us to generalize marginal-likelihood techniques from uniform blind deblurring to localized, non-uniform blur. A two-stage pipeline, first in derivative space and then in image space, allows to estimate both parametric object motion as well as a motion segmentation from a single image alone. Our experiments demonstrate its ability to cope with very challenging cases of object motion blur. |
Author | Roth, Stefan Sellent, Anita Gast, Jochen |
Author_xml | – sequence: 1 givenname: Jochen surname: Gast fullname: Gast, Jochen – sequence: 2 givenname: Anita surname: Sellent fullname: Sellent, Anita – sequence: 3 givenname: Stefan surname: Roth fullname: Roth, Stefan |
BookMark | eNotzLtLw1AUgPGrKFhrRieX4J56zn2fUYMvqLSIupb7hJQmkZs4-N8r6PL9tu-cnQzjkBi7RFghAt20H9vXFQfUv5FHrCJjUWojrFWIx2yBoEWjCemMVdO0BwAkbdHSgl1vXXF9mksX6o3fpzDXL-PcjUOdy9jXd4evcsFOsztMqfp3yd4f7t_ap2a9eXxub9dNx6WaGyMd95xT5pl4DiGk6IkHB0LxFNE6UCpqmSlq7WKyIC1G7aUmp4X0IJbs6u_bpZR2n6XrXfneGWNBGSF-AMd4P_g |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.204 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 1854 |
ExternalDocumentID | 7780573 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i245t-74a2b229f2f92fcccedb92ca0352ed18a055d64f9d66ade80481d6b469a634b03 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:09:43 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i245t-74a2b229f2f92fcccedb92ca0352ed18a055d64f9d66ade80481d6b469a634b03 |
PageCount | 9 |
ParticipantIDs | ieee_primary_7780573 |
PublicationCentury | 2000 |
PublicationDate | 2016-June |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.104368 |
Snippet | Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1846 |
SubjectTerms | Cameras Computer vision Estimation Image segmentation Kernel Motion segmentation Optical imaging |
Title | Parametric Object Motion from Blur |
URI | https://ieeexplore.ieee.org/document/7780573 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_CeLRbl2aps3V4RhCdYiT3UbSvIIom8z24l9vXtt1KB68Je8UEsKX9_K97wO41ia0PnLjyTSWnrCKe1r5xjOxw0N0EBshNTgnD3I6F_eLcNGCm6YXBhFL8hkOaFj-5dt1WlCpbBiRAH8UtKHtEreqV2tXT1HSYY9q5oHLbKRqfhQ4ubHsNDaH45fZExG7iKUgfjirlMAy6UKyXVLFJ3kbFLkZpF-_1Br_u-Z96O9a-NisAacDaOHqELr1m5PVN_rThba2DttYD65mmhhbJN3PHg3VaVhSev0w6kVht-_Fpg_zyd3zeOrVVgreKxdh7kVCc8O5ynimeJamKVqjeKpJDRXtKNZ-GFopMmWl1BZjUpGx0rjcWctAGD84gs5qvcJjYFIHka8xiEXMhUN3LaQYRVmUubeXshieQI92YflRqWUs6w04_Tt8Bnt0ChX56hw6-abACwfzubksz_cb9VmjMw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LTsJAFL1BXOgKFYxvG6PLQplOp52FG1EC8pAYMOxwpjNNjAYMtDH6Lf6K_-ZMX0TjlsRdexdNemcy9zHnngNwzrgjLIm4SXyPmFhQZDJqcZN7Kh5KFWJdqQece33SGuHbsTMuwGc-CyOljMFnsqof47t8MfMj3SqruZqA382kqjvy_U0VaIvL9rVazQuEmjfDRstMNQTMJ4Sd0HQxQxwhGqCAosD3fSk4RT7TNKBS1D1mOY4gOKCCECakp-lTBOGqaGTExtyy1XfXYF3lGQ5KpsOWHRxKVLSj-butailC8zsMpPVflqyetcbD4F5DyTQuAv_QcolDWbMEX5kTEgTLczUKedX_-MUP-V-9tAWV5ZCiMcjD7zYU5HQHSmlWbaRn1kKZMuGKzFaGswHTmDQtTmDccd2JMnqxmpGhp22Mq5doXoHRSn5hF4rT2VTugUGY7VpM2h72EFb5C8ME193ADVR2SYV09qGsvT55TfhAJqnDD_42n8JGa9jrTrrtfucQNvUOSKBmR1AM55E8VklNyE_ivWXA46qX6RsfjAGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Parametric+Object+Motion+from+Blur&rft.au=Gast%2C+Jochen&rft.au=Sellent%2C+Anita&rft.au=Roth%2C+Stefan&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1846&rft.epage=1854&rft_id=info:doi/10.1109%2FCVPR.2016.204&rft.externalDocID=7780573 |