Parametric Object Motion from Blur

Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that allows to compute the motion of objects from a single image. Drawing on the success of joint segmentation and parametric motion models in the c...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1846 - 1854
Main Authors Gast, Jochen, Sellent, Anita, Roth, Stefan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that allows to compute the motion of objects from a single image. Drawing on the success of joint segmentation and parametric motion models in the context of optical flow estimation, we propose a parametric object motion model combined with a segmentation mask to exploit localized, non-uniform motion blur. Our parametric image formation model is differentiable w.r.t. the motion parameters, which enables us to generalize marginal-likelihood techniques from uniform blind deblurring to localized, non-uniform blur. A two-stage pipeline, first in derivative space and then in image space, allows to estimate both parametric object motion as well as a motion segmentation from a single image alone. Our experiments demonstrate its ability to cope with very challenging cases of object motion blur.
AbstractList Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that allows to compute the motion of objects from a single image. Drawing on the success of joint segmentation and parametric motion models in the context of optical flow estimation, we propose a parametric object motion model combined with a segmentation mask to exploit localized, non-uniform motion blur. Our parametric image formation model is differentiable w.r.t. the motion parameters, which enables us to generalize marginal-likelihood techniques from uniform blind deblurring to localized, non-uniform blur. A two-stage pipeline, first in derivative space and then in image space, allows to estimate both parametric object motion as well as a motion segmentation from a single image alone. Our experiments demonstrate its ability to cope with very challenging cases of object motion blur.
Author Roth, Stefan
Sellent, Anita
Gast, Jochen
Author_xml – sequence: 1
  givenname: Jochen
  surname: Gast
  fullname: Gast, Jochen
– sequence: 2
  givenname: Anita
  surname: Sellent
  fullname: Sellent, Anita
– sequence: 3
  givenname: Stefan
  surname: Roth
  fullname: Roth, Stefan
BookMark eNotzLtLw1AUgPGrKFhrRieX4J56zn2fUYMvqLSIupb7hJQmkZs4-N8r6PL9tu-cnQzjkBi7RFghAt20H9vXFQfUv5FHrCJjUWojrFWIx2yBoEWjCemMVdO0BwAkbdHSgl1vXXF9mksX6o3fpzDXL-PcjUOdy9jXd4evcsFOsztMqfp3yd4f7t_ap2a9eXxub9dNx6WaGyMd95xT5pl4DiGk6IkHB0LxFNE6UCpqmSlq7WKyIC1G7aUmp4X0IJbs6u_bpZR2n6XrXfneGWNBGSF-AMd4P_g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.204
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 1854
ExternalDocumentID 7780573
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i245t-74a2b229f2f92fcccedb92ca0352ed18a055d64f9d66ade80481d6b469a634b03
IEDL.DBID RIE
IngestDate Wed Aug 27 02:09:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i245t-74a2b229f2f92fcccedb92ca0352ed18a055d64f9d66ade80481d6b469a634b03
PageCount 9
ParticipantIDs ieee_primary_7780573
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.104368
Snippet Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that...
SourceID ieee
SourceType Publisher
StartPage 1846
SubjectTerms Cameras
Computer vision
Estimation
Image segmentation
Kernel
Motion segmentation
Optical imaging
Title Parametric Object Motion from Blur
URI https://ieeexplore.ieee.org/document/7780573
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_CeLRbl2aps3V4RhCdYiT3UbSvIIom8z24l9vXtt1KB68Je8UEsKX9_K97wO41ia0PnLjyTSWnrCKe1r5xjOxw0N0EBshNTgnD3I6F_eLcNGCm6YXBhFL8hkOaFj-5dt1WlCpbBiRAH8UtKHtEreqV2tXT1HSYY9q5oHLbKRqfhQ4ubHsNDaH45fZExG7iKUgfjirlMAy6UKyXVLFJ3kbFLkZpF-_1Br_u-Z96O9a-NisAacDaOHqELr1m5PVN_rThba2DttYD65mmhhbJN3PHg3VaVhSev0w6kVht-_Fpg_zyd3zeOrVVgreKxdh7kVCc8O5ynimeJamKVqjeKpJDRXtKNZ-GFopMmWl1BZjUpGx0rjcWctAGD84gs5qvcJjYFIHka8xiEXMhUN3LaQYRVmUubeXshieQI92YflRqWUs6w04_Tt8Bnt0ChX56hw6-abACwfzubksz_cb9VmjMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LTsJAFL1BXOgKFYxvG6PLQplOp52FG1EC8pAYMOxwpjNNjAYMtDH6Lf6K_-ZMX0TjlsRdexdNemcy9zHnngNwzrgjLIm4SXyPmFhQZDJqcZN7Kh5KFWJdqQece33SGuHbsTMuwGc-CyOljMFnsqof47t8MfMj3SqruZqA382kqjvy_U0VaIvL9rVazQuEmjfDRstMNQTMJ4Sd0HQxQxwhGqCAosD3fSk4RT7TNKBS1D1mOY4gOKCCECakp-lTBOGqaGTExtyy1XfXYF3lGQ5KpsOWHRxKVLSj-butailC8zsMpPVflqyetcbD4F5DyTQuAv_QcolDWbMEX5kTEgTLczUKedX_-MUP-V-9tAWV5ZCiMcjD7zYU5HQHSmlWbaRn1kKZMuGKzFaGswHTmDQtTmDccd2JMnqxmpGhp22Mq5doXoHRSn5hF4rT2VTugUGY7VpM2h72EFb5C8ME193ADVR2SYV09qGsvT55TfhAJqnDD_42n8JGa9jrTrrtfucQNvUOSKBmR1AM55E8VklNyE_ivWXA46qX6RsfjAGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Parametric+Object+Motion+from+Blur&rft.au=Gast%2C+Jochen&rft.au=Sellent%2C+Anita&rft.au=Roth%2C+Stefan&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1846&rft.epage=1854&rft_id=info:doi/10.1109%2FCVPR.2016.204&rft.externalDocID=7780573