Heteroepitaxy of Ga2(1-x)In2xO3 layers by MOVPE with two different oxygen sources

Ga2(1‑x)In2xO3 epitaxial layers have been grown on (0001) Al2O3 substrates by metal organic vapour phase epitaxy (MOVPE). The process parameters were optimized and the effects related to the use of two alternative oxygenation sources like O2 and H2O were studied. Different In content x [x = In/(In +...

Full description

Saved in:
Bibliographic Details
Published inCrystal research and technology (1979) Vol. 49; no. 8; pp. 552 - 557
Main Authors Baldini, M., Gogova, D., Irmscher, K., Schmidbauer, M., Wagner, G., Fornari, R.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ga2(1‑x)In2xO3 epitaxial layers have been grown on (0001) Al2O3 substrates by metal organic vapour phase epitaxy (MOVPE). The process parameters were optimized and the effects related to the use of two alternative oxygenation sources like O2 and H2O were studied. Different In content x [x = In/(In + Ga)] were investigated in order to determine the In solubility limit in β‐Ga2O3. By using pure O2 during the growth, the In amount detected in the layers increased linearly with the flux of In precursor injected into the reactor, but the X‑ray diffraction patterns showed the presence of In2O3, in addition to β‐Ga2O3, for every In content. The second phase formation was confirmed by a double step feature placed at the absorption edge in optical transmission spectra, compatible with the presence of the two materials. With H2O as an oxygenation source, no In2O3 phase was observed up to x∼0.25. The growth of the mixed Ga2(1‐x)In2xO3 phase was confirmed by XRD spectra, wherein the β‐Ga2O3‐related peaks shifted at lower 2θ angles as expected from the substitution of Ga3+ ions with bigger In3+ ones. The variation of bandgap was confirmed by optical transmittance measurements, which showed a red shift of the absorption edge corresponding to In incorporation. The subject of this paper is the epitaxial growth of thin films of gallium‐indium oxide (Ga2(1−x)In2xO3), a transparent semiconducting oxide. The effects related to the use of oxygen and water as oxygenation sources were investigated. With oxygen, independently from the amount of In incorporated in the layers, phase separation of the two binary oxides was observed. With water, on the other hand, no In2O3 phase occurred up to x∼0.25, and the layers showed improved surface morphology.
AbstractList Ga2(1‑x)In2xO3 epitaxial layers have been grown on (0001) Al2O3 substrates by metal organic vapour phase epitaxy (MOVPE). The process parameters were optimized and the effects related to the use of two alternative oxygenation sources like O2 and H2O were studied. Different In content x [x = In/(In + Ga)] were investigated in order to determine the In solubility limit in β‐Ga2O3. By using pure O2 during the growth, the In amount detected in the layers increased linearly with the flux of In precursor injected into the reactor, but the X‑ray diffraction patterns showed the presence of In2O3, in addition to β‐Ga2O3, for every In content. The second phase formation was confirmed by a double step feature placed at the absorption edge in optical transmission spectra, compatible with the presence of the two materials. With H2O as an oxygenation source, no In2O3 phase was observed up to x∼0.25. The growth of the mixed Ga2(1‐x)In2xO3 phase was confirmed by XRD spectra, wherein the β‐Ga2O3‐related peaks shifted at lower 2θ angles as expected from the substitution of Ga3+ ions with bigger In3+ ones. The variation of bandgap was confirmed by optical transmittance measurements, which showed a red shift of the absorption edge corresponding to In incorporation. The subject of this paper is the epitaxial growth of thin films of gallium‐indium oxide (Ga2(1−x)In2xO3), a transparent semiconducting oxide. The effects related to the use of oxygen and water as oxygenation sources were investigated. With oxygen, independently from the amount of In incorporated in the layers, phase separation of the two binary oxides was observed. With water, on the other hand, no In2O3 phase occurred up to x∼0.25, and the layers showed improved surface morphology.
Author Irmscher, K.
Schmidbauer, M.
Gogova, D.
Wagner, G.
Baldini, M.
Fornari, R.
Author_xml – sequence: 1
  givenname: M.
  surname: Baldini
  fullname: Baldini, M.
  email: Michele.baldini@ikz-berlin.de
  organization: Leibniz Institute for Crystal Growth, Berlin, Germany
– sequence: 2
  givenname: D.
  surname: Gogova
  fullname: Gogova, D.
  organization: Leibniz Institute for Crystal Growth, Berlin, Germany
– sequence: 3
  givenname: K.
  surname: Irmscher
  fullname: Irmscher, K.
  organization: Leibniz Institute for Crystal Growth, Berlin, Germany
– sequence: 4
  givenname: M.
  surname: Schmidbauer
  fullname: Schmidbauer, M.
  organization: Leibniz Institute for Crystal Growth, Berlin, Germany
– sequence: 5
  givenname: G.
  surname: Wagner
  fullname: Wagner, G.
  organization: Leibniz Institute for Crystal Growth, Berlin, Germany
– sequence: 6
  givenname: R.
  surname: Fornari
  fullname: Fornari, R.
  organization: Leibniz Institute for Crystal Growth, Berlin, Germany
BookMark eNo9kM9PwkAQhTcGExG9et6jHoqzu-2WPRLCL4OiBjHhstmWGa1iS7Y1tP-9EAyneZOX7x2-S9bKixwZuxHQFQDyPvWu6koQCiAUcMbaIpIiCCE2LdYGqWRwqC7YZVl-AYDRoWyzlwlW6AvcZpWrG14QHzt5K4L6bprLeq74xjXoS540_HG-fB7yXVZ98mpX8HVGhB7zihd184E5L4tfn2J5xc7JbUq8_r8d9jYaLgaTYDYfTwf9WZDJUEGQotNCR3EqoiQkE6eRMSaRYbJWilJNSY8iRBdJTUQaVJxQb232SZKgnibVYea4u8s22Nitz36cb6wAe7BhDzbsyYYdvPYXp2_PBkc2KyusT6zz31bHKo7s-9PYxmK5elgNRhbUHz--Zrk
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
DOI 10.1002/crat.201300410
DatabaseName Istex
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1521-4079
EndPage 557
ExternalDocumentID CRAT201300410
ark_67375_WNG_71VZJZCF_0
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
RNW
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
VH1
W8V
W99
WBKPD
WGJPS
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
ID FETCH-LOGICAL-i2430-cea61657c15b4f97c5999b24bd33fc6fb8f5eea526fff6037bf8d9f602f1f86f3
IEDL.DBID DR2
ISSN 0232-1300
IngestDate Wed Jan 22 16:58:13 EST 2025
Wed Oct 30 09:49:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2430-cea61657c15b4f97c5999b24bd33fc6fb8f5eea526fff6037bf8d9f602f1f86f3
Notes ArticleID:CRAT201300410
istex:6FE81C45A9063F34264D7D1E153D995C3196C8F6
ark:/67375/WNG-71VZJZCF-0
PageCount 6
ParticipantIDs wiley_primary_10_1002_crat_201300410_CRAT201300410
istex_primary_ark_67375_WNG_71VZJZCF_0
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationTitle Crystal research and technology (1979)
PublicationTitleAlternate Crystal Research and Technology
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References M. Grundmann, H. Frenzel, A. Lajn, M. Lorenz, F. Schein, and H. von Wenckstern, Phys. Status Solidi A 207(6), 1437-1449 (2010).
Z. Galazka, R. Uecker, K. Irmscher, D. Schulz, D. Klimm, M. Albrecht, M. Pietsch, S. Ganschow, A. Kwasniewski, and R. Fornari, J. Cryst. Growth 362, 349-352 (2013).
D. D. Edwards, P. O. Folkins, and T. O. Mason, J. Am. Ceram. Soc. 80(1), 253-257 (1997).
A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, J. Appl. Phys. 95, 4734 (2004).
T. J. Marks, J. G. C. Veinot, J. Cui, H. Yan, A. Wang, N. L. Edelman, J. Ni, Q. Huang, D. S. Ginley, and C. Bright, MRS Bull. 25, 15 (2000).
M. Fleischer and H. Meixner, Sensors and Actuators B 4, 437-441 (1991).
L. Kong, J. Ma, C. Luan, and Z. Zhu, J. Solid State Chem. 184, 1946-195 (2011).
K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, J. Appl. Phys. 110, 063720 (2011).
R. Cebulla, R. Wendt, and K. Ellmer, J. Appl. Phys. 83, 1087 (1998).
J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 97, 142106 (2010).
Ph. Ebert, T. J. Zhang, F. Kluge, M. Simon, Z. Y. Zhang, and K. Urban, Phys. Rev. Lett. 83, 757 (1999).
T. Oshima and S. Fujita, Phys. Status Solidi C 5(9), 3113-3115 (2008).
C. G. Granqvist and A. Hultaker, Thin Solid Films 411, 1 (2002).
N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997).
D. D. Edwards and T. O. Mason, J. Am. Ceram. Soc. 81(12), 3285-3292 (1998).
M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, Appl. Phys. Lett. 81, 250 (2002).
C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. van de Walle, New J. Phys. 13, 085014 (2011).
A. Walsh, J. L. F. Da Silva, S.-H. Wei, C. Körber, A. Klein, L.F.J. Piper, Alex DeMasi, Kevin E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, and R. G. Egdell, Phys. Rev. Lett. 100, 167402 (2008).
G. Wagner, M. Baldini, D. Gogova, M. Schmidbauer, R. Schewski, M. Albrecht, Z. Galazka, D. Klimm, and R. Fornari, Phys. Status Solidi A, 211, 1-7 (2013).
E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, MRS Bull. 32, 242 (2007).
A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, J. Appl. Phys. 83, 1049 (1998).
S. Nakagomi and Y. Kokubun, J. Cryst. Growth 349, 12-18 (2012).
T. Minami, Semicond. Sci. Technol. 20, S35-S44 (2005).
F. Yang, J. Ma, C. Luan, L. Kong, and Z. Zhu, in: Proceedings of the International Symposium on Photonics and Optoelectronics (SOPO), Wuhan, China, 2011 (IEEE, Piscataway, 2011).
L. Kong, J. Ma, F. Yang, C. Luan, and Z. Zhu, J. Alloys Compd. 499, 75-79 (2010).
1991; 4
1997; 80
2010; 97
2004; 95
1997; 70
2000; 25
2010; 207
2011
2010; 499
2002; 411
2013; 211
2005; 20
2002; 81
2011; 13
1998; 81
2008; 5
1998; 83
1999; 83
2013; 362
2007; 32
2008; 100
2011; 184
2012; 349
2011; 110
References_xml – reference: E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, MRS Bull. 32, 242 (2007).
– reference: C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. van de Walle, New J. Phys. 13, 085014 (2011).
– reference: N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997).
– reference: S. Nakagomi and Y. Kokubun, J. Cryst. Growth 349, 12-18 (2012).
– reference: D. D. Edwards and T. O. Mason, J. Am. Ceram. Soc. 81(12), 3285-3292 (1998).
– reference: C. G. Granqvist and A. Hultaker, Thin Solid Films 411, 1 (2002).
– reference: F. Yang, J. Ma, C. Luan, L. Kong, and Z. Zhu, in: Proceedings of the International Symposium on Photonics and Optoelectronics (SOPO), Wuhan, China, 2011 (IEEE, Piscataway, 2011).
– reference: L. Kong, J. Ma, C. Luan, and Z. Zhu, J. Solid State Chem. 184, 1946-195 (2011).
– reference: G. Wagner, M. Baldini, D. Gogova, M. Schmidbauer, R. Schewski, M. Albrecht, Z. Galazka, D. Klimm, and R. Fornari, Phys. Status Solidi A, 211, 1-7 (2013).
– reference: Ph. Ebert, T. J. Zhang, F. Kluge, M. Simon, Z. Y. Zhang, and K. Urban, Phys. Rev. Lett. 83, 757 (1999).
– reference: K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, J. Appl. Phys. 110, 063720 (2011).
– reference: A. Walsh, J. L. F. Da Silva, S.-H. Wei, C. Körber, A. Klein, L.F.J. Piper, Alex DeMasi, Kevin E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, and R. G. Egdell, Phys. Rev. Lett. 100, 167402 (2008).
– reference: A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, J. Appl. Phys. 95, 4734 (2004).
– reference: J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 97, 142106 (2010).
– reference: M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, Appl. Phys. Lett. 81, 250 (2002).
– reference: T. J. Marks, J. G. C. Veinot, J. Cui, H. Yan, A. Wang, N. L. Edelman, J. Ni, Q. Huang, D. S. Ginley, and C. Bright, MRS Bull. 25, 15 (2000).
– reference: M. Fleischer and H. Meixner, Sensors and Actuators B 4, 437-441 (1991).
– reference: T. Oshima and S. Fujita, Phys. Status Solidi C 5(9), 3113-3115 (2008).
– reference: Z. Galazka, R. Uecker, K. Irmscher, D. Schulz, D. Klimm, M. Albrecht, M. Pietsch, S. Ganschow, A. Kwasniewski, and R. Fornari, J. Cryst. Growth 362, 349-352 (2013).
– reference: D. D. Edwards, P. O. Folkins, and T. O. Mason, J. Am. Ceram. Soc. 80(1), 253-257 (1997).
– reference: T. Minami, Semicond. Sci. Technol. 20, S35-S44 (2005).
– reference: M. Grundmann, H. Frenzel, A. Lajn, M. Lorenz, F. Schein, and H. von Wenckstern, Phys. Status Solidi A 207(6), 1437-1449 (2010).
– reference: A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, J. Appl. Phys. 83, 1049 (1998).
– reference: R. Cebulla, R. Wendt, and K. Ellmer, J. Appl. Phys. 83, 1087 (1998).
– reference: L. Kong, J. Ma, F. Yang, C. Luan, and Z. Zhu, J. Alloys Compd. 499, 75-79 (2010).
– year: 2011
– volume: 211
  start-page: 1
  year: 2013
  end-page: 7
  publication-title: Phys. Status Solidi A
– volume: 95
  start-page: 4734
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 83
  start-page: 1087
  year: 1998
  publication-title: J. Appl. Phys.
– volume: 411
  start-page: 1
  year: 2002
  publication-title: Thin Solid Films
– volume: 207
  start-page: 1437
  issue: 6
  year: 2010
  end-page: 1449
  publication-title: Phys. Status Solidi A
– volume: 362
  start-page: 349
  year: 2013
  end-page: 352
  publication-title: J. Cryst. Growth
– volume: 349
  start-page: 12
  year: 2012
  end-page: 18
  publication-title: J. Cryst. Growth
– volume: 25
  start-page: 15
  year: 2000
  publication-title: MRS Bull.
– volume: 499
  start-page: 75
  year: 2010
  end-page: 79
  publication-title: J. Alloys Compd.
– volume: 83
  start-page: 1049
  year: 1998
  publication-title: J. Appl. Phys.
– volume: 97
  start-page: 142106
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 110
  start-page: 063720
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 83
  start-page: 757
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 100
  start-page: 167402
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 085014
  year: 2011
  publication-title: New J. Phys.
– volume: 81
  start-page: 3285
  issue: 12
  year: 1998
  end-page: 3292
  publication-title: J. Am. Ceram. Soc.
– volume: 81
  start-page: 250
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: S35
  year: 2005
  end-page: S44
  publication-title: Semicond. Sci. Technol.
– volume: 70
  start-page: 3561
  year: 1997
  publication-title: Appl. Phys. Lett.
– volume: 184
  start-page: 1946
  year: 2011
  end-page: 195
  publication-title: J. Solid State Chem.
– volume: 80
  start-page: 253
  issue: 1
  year: 1997
  end-page: 257
  publication-title: J. Am. Ceram. Soc.
– volume: 5
  start-page: 3113
  issue: 9
  year: 2008
  end-page: 3115
  publication-title: Phys. Status Solidi C
– volume: 4
  start-page: 437‑441
  year: 1991
  publication-title: Sensors and Actuators B
– volume: 32
  start-page: 242
  year: 2007
  publication-title: MRS Bull.
SSID ssj0009642
Score 2.2000504
Snippet Ga2(1‑x)In2xO3 epitaxial layers have been grown on (0001) Al2O3 substrates by metal organic vapour phase epitaxy (MOVPE). The process parameters were optimized...
SourceID wiley
istex
SourceType Publisher
StartPage 552
SubjectTerms Ga2O3
In2O3
metal organic vapor phase epitaxy
thin films
transparent semiconducting oxides
Title Heteroepitaxy of Ga2(1-x)In2xO3 layers by MOVPE with two different oxygen sources
URI https://api.istex.fr/ark:/67375/WNG-71VZJZCF-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcrat.201300410
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MgGCZGD-rBb-P8WDgYo4e6FtrSHpe6ORe3mfm1eGmAQmJmWjNr3Dz5F_yL_hKhXefmUW-QQEJfXnifwsPzAnAoPK5chzMDEYYNm0fU8InABo98y468SHCq3w632m7j1m72nN7UK_5cH2Jy4KZXRrZf6wVO2UvlRzSUKwtpalYmGaV_2jVhS6Oi7o9-lO9m2XNUXEKGblioNpqoMttdQVNt1eEsRM1iTH0V0GJ0ObWkf_qaslP-_ku48T_DXwMrYwAKq7nHrIM5EW-AxaDI-7YBlqckCjfBdUPzZRKhk4sMRzCR8JyiY-vr43N4chGjYQfDJ6phO2Qj2OrcXdWgPtqF6VsCi-QrKVTfoxwV5jcFL1vgtl67CRrGOBGD8YhsbBpcUNdyHcIth9nSJ9xRsJIhm0UYS-5K5klHCOogV0rpmpgw6UW-KiFpSc-VeBvMx0ksdgCUjCKqYqDwJbIFkX6kKg5mHrU48blXAkfZRITPudhGSAd9zT0jTnjfPg-JdffQfAjqoVkCKDPvpGGuv4xCbdhwYtgw6FZvJrXdv3TaA0uqbOesv30wnw5exYFCIikrg4XqWevyupx53TcQJ9jE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHAoHdkRZfUAIDimNncTJsSpd6YJKW1Avlu3YEgK1CIIonPgFfpEvwU5ISznCLY5sKZ6MMy_j8XsAHElfaNcR3EKEY8sRIbMCIrElwsB2Qj-Ugpmzw82WV-059Rs3rSY0Z2ESfohJws2sjPh7bRa4SUifTVlDhTaRqc2KOaP0X_uCkfU29PnnnSmDVODF-jk6MiHL9Ex5G_PobHa8BqfGruNZkBpHmfIK4OnzJcUld7nniOfE2y_qxn9NYBUsf2NQWEicZg3MyeE6yBRT6bd1sPSDpXADXFVNycxIGn2R8SscKVhh6MT-fP8Yn9aGaNzG8J4Z5A75K2y2-5claLK7MHoZwVR_JYJ6QtpXYbJZ8LQJeuVSt1i1vrUYrFvk4LwlJPNszyXCdrmjAiJcjSw5cniIsRKe4r5ypWQu8pRSXh4Trvww0FdI2cr3FN4C88PRUG4DqDhDTIdBGSjkSKKCUDdczH1mCxIIPwuO4zdBHxK-Dcoe70z5GXHpdatCid0f1AfFMs1nAYrtO-mYUDAjagxLJ4alxU6hO2nt_GXQIchUu80GbdRaF7tgUd93kiLAPTAfPT7LfQ1MIn4Qu94X1z_bTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTgMhFCVGEx8L38a3LIzRxdgZYGBYmmpbX9X4bLohwEBiNK3RMVZX_oK_6JcIM7ZWl7obJpAwlwv3DFzOAWDdJNq5jlYBYgoHRKcy4MzgQKc8ImmSGi393eHjOq1dkoNG3Oi7xV_wQ_Q23PzMyNdrP8HvU1v6Jg3VzkI-NSunjHI_7UOEhtyLN-yefRNIcZrL57jAhAJfs0vbGKLSz_YOm3qzdn5i1DzIVCaA7HavyC253X7K1LZ-_cXc-J_-T4LxLwQKdwqXmQIDpjUNRspd4bdpMNbHUTgDzms-YaZtvLpI5wW2LaxKtBl9vL13tvZbqHOC4Z30uB2qF3h8cnW6B_3eLsye27CrvpJB9z3OU2FxVPA4Cy4rexflWvClxBDcIILDQBtJIxozHcWKWM507HClQkSlGFtNrUpsbIyMEbXW0hAzZZOUuydkI5tQi-fAYKvdMvMAWiWRdEHQcIuIYZanrhBjlchIM66TBbCRD4S4L9g2hHy49clnLBbX9apg0VXzoFmuiHABoNy8vYoFATMS3rCiZ1hRPtu56JUW_9JoDQyf7lbE0X79cAmMutekyABcBoPZw5NZcagkU6u5430CYaPZ-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroepitaxy+of+Ga2%281-x%29In2xO3+layers+by+MOVPE+with+two+different+oxygen+sources&rft.jtitle=Crystal+research+and+technology+%281979%29&rft.au=Baldini%2C+M.&rft.au=Gogova%2C+D.&rft.au=Irmscher%2C+K.&rft.au=Schmidbauer%2C+M.&rft.date=2014-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0232-1300&rft.eissn=1521-4079&rft.volume=49&rft.issue=8&rft.spage=552&rft.epage=557&rft_id=info:doi/10.1002%2Fcrat.201300410&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_71VZJZCF_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0232-1300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0232-1300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0232-1300&client=summon