4D Gaussian Splatting for Real-Time Dynamic Scene Rendering

Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is usually hard to guarantee. To achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency, we propose 4D Ga...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 20310 - 20320
Main Authors Wu, Guanjun, Yi, Taoran, Fang, Jiemin, Xie, Lingxi, Zhang, Xiaopeng, Wei, Wei, Liu, Wenyu, Tian, Qi, Wang, Xinggang
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.06.2024
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR52733.2024.01920

Cover

Loading…
Abstract Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is usually hard to guarantee. To achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency, we propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes rather than applying 3D-GS for each individual frame. In 4D-GS, a novel explicit representation containing both 3D Gaussians and 4D neural voxels is proposed. A decomposed neural voxel encoding algorithm inspired by HexPlane is proposed to efficiently build Gaussian features from 4D neural voxels and then a lightweight MLP is applied to predict Gaussian deformations at novel timestamps. Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800x800 resolution on an RTX 3090 GPU while maintaining comparable or better quality than previous state- of-the-art methods. More demos and code are available at https://guanjunwu.github.io/4dgs/.
AbstractList Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is usually hard to guarantee. To achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency, we propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes rather than applying 3D-GS for each individual frame. In 4D-GS, a novel explicit representation containing both 3D Gaussians and 4D neural voxels is proposed. A decomposed neural voxel encoding algorithm inspired by HexPlane is proposed to efficiently build Gaussian features from 4D neural voxels and then a lightweight MLP is applied to predict Gaussian deformations at novel timestamps. Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800x800 resolution on an RTX 3090 GPU while maintaining comparable or better quality than previous state- of-the-art methods. More demos and code are available at https://guanjunwu.github.io/4dgs/.
Author Wang, Xinggang
Yi, Taoran
Tian, Qi
Wu, Guanjun
Zhang, Xiaopeng
Wei, Wei
Xie, Lingxi
Fang, Jiemin
Liu, Wenyu
Author_xml – sequence: 1
  givenname: Guanjun
  surname: Wu
  fullname: Wu, Guanjun
  email: guajuwu@hust.edu.cn
  organization: School of CS, Huazhong University of Science and Technology
– sequence: 2
  givenname: Taoran
  surname: Yi
  fullname: Yi, Taoran
  email: taoranyi@hust.edu.cn
  organization: School of EIC, Huazhong University of Science and Technology
– sequence: 3
  givenname: Jiemin
  surname: Fang
  fullname: Fang, Jiemin
  email: jaminfong@gmail.com
  organization: Huawei Inc
– sequence: 4
  givenname: Lingxi
  surname: Xie
  fullname: Xie, Lingxi
  email: 198808xc@gmail.com
  organization: Huawei Inc
– sequence: 5
  givenname: Xiaopeng
  surname: Zhang
  fullname: Zhang, Xiaopeng
  email: zxphistory@gmail.com
  organization: Huawei Inc
– sequence: 6
  givenname: Wei
  surname: Wei
  fullname: Wei, Wei
  email: weiw@hust.edu.cn
  organization: School of CS, Huazhong University of Science and Technology
– sequence: 7
  givenname: Wenyu
  surname: Liu
  fullname: Liu, Wenyu
  email: liuwy@hust.edu.cn
  organization: School of EIC, Huazhong University of Science and Technology
– sequence: 8
  givenname: Qi
  surname: Tian
  fullname: Tian, Qi
  email: tian.qi1@huawei.com
  organization: Huawei Inc
– sequence: 9
  givenname: Xinggang
  surname: Wang
  fullname: Wang, Xinggang
  email: xgwang@hust.edu.cn
  organization: School of EIC, Huazhong University of Science and Technology
BookMark eNotj9FKwzAUhqMoOGffYBd5gdaTnJy0wSvpdAoDZZvejjRJJdJmo50Xe3sLevXBz8cP3y27SocUGFsIKIQAc19_vm9IloiFBKkKEEbCBctMaSokQEIAfclmAjTm2ghzw7Jx_AYAlEJoU83Yg1rylf0Zx2gT3x47ezrF9MXbw8A3wXb5LvaBL8_J9tHxrQspTHvyYZisO3bd2m4M2T_n7OP5aVe_5Ou31Wv9uM6jVPKUS0HkqbGoqQVrWus1SeFQCeOIGuUMltIQWkfgmtai8V5OQuWaoDwgztni7zeGEPbHIfZ2OO-nKNJlqfAX4udJ2A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52733.2024.01920
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350353006
EISSN 1063-6919
EndPage 20320
ExternalDocumentID 10656774
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62376102
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i242t-2155d5ba365f0a9fad6521c3419c55b4c9372953ac50cbfa39dd221c8cbe4d033
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i242t-2155d5ba365f0a9fad6521c3419c55b4c9372953ac50cbfa39dd221c8cbe4d033
PageCount 11
ParticipantIDs ieee_primary_10656774
PublicationCentury 2000
PublicationDate 2024-06-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.6757731
Snippet Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is...
SourceID ieee
SourceType Publisher
StartPage 20310
SubjectTerms Deformation
Dynamic scene
Dynamics
Gaussian splatting
Neural radiance field
Real-time rendering
Rendering (computer graphics)
Shape
Three-dimensional displays
Tracking
Training
Title 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering
URI https://ieeexplore.ieee.org/document/10656774
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J0_1UfFNDl6zbjebNMFjay2CpVQrvZU8QZS2tLsXf72T7LaiIHhbQsIuGWa_b5L5ZhC68alyVnBJvAZvyi0XRGcyI7rblUb6zNtYSulpxIfT_HHGZrVYPWphnHMx-cwl4THe5dulKcNRGXg4sA_gKw3UgMitEmvtDlQohDJciloe10nlbe91PAn1xSiEgVmeBDKT_miiEjFk0EKj7dur1JH3pCx0Yj5_FWb89-cdoPa3XA-Pd0B0iPbc4gi1an6Ja-_dHKO7vI8fVLkJukn8vPpQMecZA23FE-CLJMhBcL9qUQ_L4C8I40H8ArPaaDq4f-kNSd08gbwB6hYEoJxZphXlDOwhvbIckNqE8m2GMZ0bGS7sGFWGpUZ7RaW1GUwQRrvcppSeoOZiuXCnCFuVAk1hInMU-IthSnWE8qllSnjupTlD7bAZ81VVH2O-3YfzP8Yv0H4wSEi46vBL1CzWpbsCaC_0dTTpF5zPok0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4oHvSED4xve_C6uGy3ZRuPIKICIQjGG-kzMRogsnvx1zvdXTCamHhrmjbbdDL7fW3nmwG4cqG0JuEicAq9KTY8CVQkokA1m0ILFzmTp1LqD3h3Ej-8sJdSrJ5rYay1efCZrftm_pZv5jrzV2Xo4cg-kK9swhYCfywKudb6SoXiYYaLpBTINUJx3XoejnyGMYoHwSiuezoT_iijkqNIpwqD1feL4JG3epaquv78lZrx3wvchdq3YI8M11C0Bxt2tg_VkmGS0n-XB3ATt8mdzJZeOUmeFu8yj3omSFzJCBlj4AUhpF0Uqcdp-B_Efi9_wVE1mHRux61uUJZPCF4Rd9MAwZwZpiTlDC0inDQcsVr7BG6aMRVr4Z_sGJWahVo5SYUxEQ5ItLKxCSk9hMpsPrNHQIwMkaiwJLIUGYxmUjYS6ULDZOK4E_oYan4zposiQ8Z0tQ8nf_RfwnZ33O9Ne_eDx1PY8cbx4VcNfgaV9COz5wj0qbrIzfsFVZClnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=4D+Gaussian+Splatting+for+Real-Time+Dynamic+Scene+Rendering&rft.au=Wu%2C+Guanjun&rft.au=Yi%2C+Taoran&rft.au=Fang%2C+Jiemin&rft.au=Xie%2C+Lingxi&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=20310&rft.epage=20320&rft_id=info:doi/10.1109%2FCVPR52733.2024.01920&rft.externalDocID=10656774