Single-View RGBD-Based Reconstruction of Dynamic Human Geometry

We present a method for reconstructing the geometry and appearance of indoor scenes containing dynamic human subjects using a single (optionally moving) RGBD sensor. We introduce a framework for building a representation of the articulated scene geometry as a set of piecewise rigid parts which are t...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision Workshops pp. 307 - 314
Main Authors Malleson, Charles, Klaudiny, Martin, Hilton, Adrian, Guillemaut, Jean-Yves
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
DOI10.1109/ICCVW.2013.48

Cover

Loading…
Abstract We present a method for reconstructing the geometry and appearance of indoor scenes containing dynamic human subjects using a single (optionally moving) RGBD sensor. We introduce a framework for building a representation of the articulated scene geometry as a set of piecewise rigid parts which are tracked and accumulated over time using moving voxel grids containing a signed distance representation. Data association of noisy depth measurements with body parts is achieved by online training of a prior shape model for the specific subject. A novel frame-to-frame model registration is introduced which combines iterative closest-point with additional correspondences from optical flow and prior pose constraints from noisy skeletal tracking data. We quantitatively evaluate the reconstruction and tracking performance of the approach using a synthetic animated scene. We demonstrate that the approach is capable of reconstructing mid-resolution surface models of people from low-resolution noisy data acquired from a consumer RGBD camera.
AbstractList We present a method for reconstructing the geometry and appearance of indoor scenes containing dynamic human subjects using a single (optionally moving) RGBD sensor. We introduce a framework for building a representation of the articulated scene geometry as a set of piecewise rigid parts which are tracked and accumulated over time using moving voxel grids containing a signed distance representation. Data association of noisy depth measurements with body parts is achieved by online training of a prior shape model for the specific subject. A novel frame-to-frame model registration is introduced which combines iterative closest-point with additional correspondences from optical flow and prior pose constraints from noisy skeletal tracking data. We quantitatively evaluate the reconstruction and tracking performance of the approach using a synthetic animated scene. We demonstrate that the approach is capable of reconstructing mid-resolution surface models of people from low-resolution noisy data acquired from a consumer RGBD camera.
Author Guillemaut, Jean-Yves
Klaudiny, Martin
Malleson, Charles
Hilton, Adrian
Author_xml – sequence: 1
  givenname: Charles
  surname: Malleson
  fullname: Malleson, Charles
  email: c.malleson@surrey.ac.uk
  organization: Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
– sequence: 2
  givenname: Martin
  surname: Klaudiny
  fullname: Klaudiny, Martin
  email: martin.klaudiny@surrey.ac.uk
  organization: Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
– sequence: 3
  givenname: Adrian
  surname: Hilton
  fullname: Hilton, Adrian
  email: a.hilton@surrey.ac.uk
  organization: Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
– sequence: 4
  givenname: Jean-Yves
  surname: Guillemaut
  fullname: Guillemaut, Jean-Yves
  email: j.guillemaut@surrey.ac.uk
  organization: Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
BookMark eNotz09LwzAYgPEICurs0ZOXfIHWN_-bk7huboOBMHUeR5q8lciaStsh_fYKenpuP3iuyXnqEhJyy6BgDOz9pqr27wUHJgpZnpHMmpJJY60Azs0lyYbhEwCY1cYAvyIPLzF9HDHfR_ymu9V8kc_dgIHu0HdpGPuTH2OXaNfQxZRcGz1dn1qX6Aq7Fsd-uiEXjTsOmP13Rt6elq_VOt8-rzbV4zaPXLIxb0rkEIzXFpRHUzvF6zoEBcJ4lMqowGVjAmeWlRqCra1XvwtSW4alFkrMyN2fGxHx8NXH1vXTQRulLBPiB6DRR5c
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCVW.2013.48
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISBN 9781479930227
1479930229
EndPage 314
ExternalDocumentID 6755913
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i241t-f8e20d7c6905ce7ba52bbdd5037ce4575d24f7d2191860d9b9c50134691e86353
IEDL.DBID RIE
IngestDate Wed Aug 27 04:21:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-f8e20d7c6905ce7ba52bbdd5037ce4575d24f7d2191860d9b9c50134691e86353
PageCount 8
ParticipantIDs ieee_primary_6755913
PublicationCentury 2000
PublicationDate 2013-12
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12
PublicationDecade 2010
PublicationTitle 2013 IEEE International Conference on Computer Vision Workshops
PublicationTitleAbbrev iccvw
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967702
ssj0001967681
Score 1.5949051
Snippet We present a method for reconstructing the geometry and appearance of indoor scenes containing dynamic human subjects using a single (optionally moving) RGBD...
SourceID ieee
SourceType Publisher
StartPage 307
SubjectTerms 3D reconstruction
articulated
Cameras
depth
Geometry
Iterative closest point algorithm
Joints
Optical imaging
piece-wise rigid
rgbd
rgbz
Sensors
Surface reconstruction
Title Single-View RGBD-Based Reconstruction of Dynamic Human Geometry
URI https://ieeexplore.ieee.org/document/6755913
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qk15UwPhODx7dpfso3b0CAppgjBHkRrbtNCEqa3SJ0V_vdHd5aDx42sepnaad75t-M0PIBYC06Y_cYUoiQUl86UTSWK0r84AxZXRgs5GHt63BKLyZ8EmFXK5yYQAgF5-Ba1_zu3ydqoUNlTUR3PLYtqjdQuJW5Gqt4ylxC5Gz9-NbWPHOsqxm87rTGT9aMVfg2m4_G81Ucl_S2yXD5SgKCcmTu8ikq75-FWj87zD3SGOdtUfvVv5on1RgXiO7Jcyk5SZ-r5GdjRqEdUTr-HgGZzyDD3rfb3edNjo2TS0vXVeXpamh3aJ5Pc3j_rQP6Qtkb58NMupdPXQGTtlVwZmht84cE4HPtFBIi7kCIRPuS6k1Z4FQECJ6035ohMaTzItaTMcyVhxthjTagwjhSXBAqvN0DoeEhshdQjwTjIgQiAWQhMqIIDQJ50J6kh-RurXO9LUonDEtDXP89-8Tsm0Xp9CKnJIqzhDO0ONn8jxf6m9_f6hz
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPagXFDC-3YNHW_pa2l4BeSgQYwC5ke7ubEJUarTE6K93ti0PjQdPfZy2M9n9vpl-M0PIFQDX5Y_MsATHACVyuBFwpbWulg2WJZR0dTVyf1DrjLzbCZsUyPWqFgYAUvEZmPo2_ZcvY7HQqbIqklsW6hG124j7XphVa60zKmENubP949nX8p1lY81qt9EYP2o5l2vqeT8b41RSNGkVSX-5jkxE8mQuEm6Kr18tGv-70H1SWdft0fsVIh2QAsxLpJgTTZpv4_cS2dvoQlhGvo6XZzDGM_igD-1606gjtEmqI9N1f1kaK9rMxtfTNPNP2xC_QPL2WSGj1s2w0THyuQrGDPE6MVQAjiV9gYExE-DziDmcS8ks1xfgIX-Tjqd8iWeZHdQsGfJQMLQZBtI2BEhQ3EOyNY_ncESoh9GLh6eC8gN0iQuRJ5TveipizOc2Z8ekrK0zfc1aZ0xzw5z8_fqS7HSG_d601x3cnZJd7ahMOXJGtvBr4RzxP-EXqdu_AYuyq8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision+Workshops&rft.atitle=Single-View+RGBD-Based+Reconstruction+of+Dynamic+Human+Geometry&rft.au=Malleson%2C+Charles&rft.au=Klaudiny%2C+Martin&rft.au=Hilton%2C+Adrian&rft.au=Guillemaut%2C+Jean-Yves&rft.date=2013-12-01&rft.pub=IEEE&rft.spage=307&rft.epage=314&rft_id=info:doi/10.1109%2FICCVW.2013.48&rft.externalDocID=6755913