Efficient mean-shift tracking via a new similarity measure
The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the model and target image. The most typically used similarity measures are th...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 176 - 183 vol. 1 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.139 |
Cover
Loading…
Abstract | The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the model and target image. The most typically used similarity measures are the Bhattacharyya coefficient or the Kullback-Leibler divergence. In practice, these approaches face three difficulties. First, the spatial information of the target is lost when the color histogram is employed, which precludes the application of more elaborate motion models. Second, the classical similarity measures are not very discriminative. Third, the sample-based classical similarity measures require a calculation that is quadratic in the number of samples, making real-time performance difficult. To deal with these difficulties we propose a new, simple-to-compute and more discriminative similarity measure in spatial-feature spaces. The new similarity measure allows the mean shift algorithm to track more general motion models in an integrated way. To reduce the complexity of the computation to linear order we employ the recently proposed improved fast Gauss transform. This leads to a very efficient and robust nonparametric spatial-feature tracking algorithm. The algorithm is tested on several image sequences and shown to achieve robust and reliable frame-rate tracking. |
---|---|
AbstractList | The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the model and target image. The most typically used similarity measures are the Bhattacharyya coefficient or the Kullback-Leibler divergence. In practice, these approaches face three difficulties. First, the spatial information of the target is lost when the color histogram is employed, which precludes the application of more elaborate motion models. Second, the classical similarity measures are not very discriminative. Third, the sample-based classical similarity measures require a calculation that is quadratic in the number of samples, making real-time performance difficult. To deal with these difficulties we propose a new, simple-to-compute and more discriminative similarity measure in spatial-feature spaces. The new similarity measure allows the mean shift algorithm to track more general motion models in an integrated way. To reduce the complexity of the computation to linear order we employ the recently proposed improved fast Gauss transform. This leads to a very efficient and robust nonparametric spatial-feature tracking algorithm. The algorithm is tested on several image sequences and shown to achieve robust and reliable frame-rate tracking. |
Author | Duraiswami, R. Changjiang Yang Davis, L. |
Author_xml | – sequence: 1 surname: Changjiang Yang fullname: Changjiang Yang organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA – sequence: 2 givenname: R. surname: Duraiswami fullname: Duraiswami, R. organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA – sequence: 3 givenname: L. surname: Davis fullname: Davis, L. organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA |
BookMark | eNpNjL1OwzAYRS0oEm3pyMTiF0jwf2I2FLWAVAmEgLXyz2f4oDEoDqC-PSAYuMsZztGdkUl-zUDIMWc158yedg83t7VgTNdc2j0y5czIylhu98mMNcZqIRshJv_EIVmU8sy-J61slZiSs2VKGBDySHtwuSpPmEY6Di68YH6kH-iooxk-acEet27AcfcTlvcBjshBctsCiz_Oyf1qedddVuvri6vufF2hUHysEg8QXWTCW8-F1QABvARjRGqjMrbVUhvjfPCqBad0tDFGH4KTktuWCTknJ7-_CACbtwF7N-w2XJlGGC2_ACzuSyk |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.139 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 183 vol. 1 |
ExternalDocumentID | 1467265 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-f1cedad02b9b1295eeceb3e662f8d469853566abcb48ea45d9dddbcca33198023 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-f1cedad02b9b1295eeceb3e662f8d469853566abcb48ea45d9dddbcca33198023 |
ParticipantIDs | ieee_primary_1467265 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 2.1229303 |
Snippet | The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 176 |
SubjectTerms | Density measurement Extraterrestrial measurements Gaussian processes Histograms Image sequences Improved fast Gauss transform Kernel Mean-shift algorithm Motion measurement Robustness Similarity measure Spatial-feature tracking Target tracking Testing |
Title | Efficient mean-shift tracking via a new similarity measure |
URI | https://ieeexplore.ieee.org/document/1467265 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx5doNt2ab0SCDHBECOGG9lXY2MoBooHf70z2wfGePDWnTZNd7ubme_bnW8IuVNS-p72LAPfBgBF2YApEflsmCjNByLxdIJ8x-xJTBfB4zJcNsh9nQtjrXWHz2wPL91evtnoPVJlfVzVXIRN0gTgVuRq1XwK5phGJczDtg_IRsT1jgLHaixu51P4TMReXED4OMQbvFTiqdrxQYyzP3qdPxfUi4cFxX-UYHEeaNIms-rbi4Mn7719rnr665es4387d0y6h1w_Oq-92Alp2OyUtMvglJZLfwemqv5DZeuQh7HTn4DX0rWVGdu9pUlO863UyL_Tz1RSSSFsp7t0nQKChoAfH0ROsksWk_HLaMrKWgwsBR-fM_hp1kgz4CpWECKE1mqA4VYInkQGq1CGPgSGUmkVRFYGoYmNMQqmhw9rHEXmzkgr22T2nFDLwSyjxIQ8CYLEB8AlUTdQGxMMlfAuSAdHZ_VRyG2syoG5_Nt8RY6cmqpjRa5JK9_u7Q3ECbm6dRPkGz6etR4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_DoAn0trVcCQQVCDBhuZF-NjaEYKB789c70hTEevHWnTdPd7mbm-3bnG0LupBCOpSzDwLcBQJHGZZL7DuuEUtltHloqRL5jNOaDmfs09-YVcl_mwhhj0sNnpomX6V6-XqktUmUtXNU29_bIvofJuFm2VsmoYJapnwM9bDuAbXhQ7inYWI8l3fvkDuOBFWQgPvDwhp1r8RTtYCfH2eq-Tl4y8sXCkuI_irCkPqhfI6Pi67OjJ-_NbSKb6uuXsON_u3dEGrtsPzop_dgxqZj4hNTy8JTmi38DpqICRGGrk4deqkABr6VLI2K2eYvChCZroZCBp5-RoIJC4E430TICDA0hPz6IrGSDzPq9aXfA8moMLAIvnzD4bUYL3bZlICFI8IxRAMQN53boa6xD6TkQGgqppOsb4Xo60FpLmCAOrHKUmTsl1XgVmzNCjQ1m4Yfas0PXDR2AXAKVA5XWbkdy65zUcXQWH5ngxiIfmIu_zbfkYDAdDRfDx_HzJTlMtVVTjuSKVJP11lxD1JDIm3SyfAPm2Lhm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Efficient+mean-shift+tracking+via+a+new+similarity+measure&rft.au=Changjiang+Yang&rft.au=Duraiswami%2C+R.&rft.au=Davis%2C+L.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=176&rft.epage=183+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.139&rft.externalDocID=1467265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |