Efficient mean-shift tracking via a new similarity measure

The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the model and target image. The most typically used similarity measures are th...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 176 - 183 vol. 1
Main Authors Changjiang Yang, Duraiswami, R., Davis, L.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.139

Cover

Loading…
Abstract The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the model and target image. The most typically used similarity measures are the Bhattacharyya coefficient or the Kullback-Leibler divergence. In practice, these approaches face three difficulties. First, the spatial information of the target is lost when the color histogram is employed, which precludes the application of more elaborate motion models. Second, the classical similarity measures are not very discriminative. Third, the sample-based classical similarity measures require a calculation that is quadratic in the number of samples, making real-time performance difficult. To deal with these difficulties we propose a new, simple-to-compute and more discriminative similarity measure in spatial-feature spaces. The new similarity measure allows the mean shift algorithm to track more general motion models in an integrated way. To reduce the complexity of the computation to linear order we employ the recently proposed improved fast Gauss transform. This leads to a very efficient and robust nonparametric spatial-feature tracking algorithm. The algorithm is tested on several image sequences and shown to achieve robust and reliable frame-rate tracking.
AbstractList The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the model and target image. The most typically used similarity measures are the Bhattacharyya coefficient or the Kullback-Leibler divergence. In practice, these approaches face three difficulties. First, the spatial information of the target is lost when the color histogram is employed, which precludes the application of more elaborate motion models. Second, the classical similarity measures are not very discriminative. Third, the sample-based classical similarity measures require a calculation that is quadratic in the number of samples, making real-time performance difficult. To deal with these difficulties we propose a new, simple-to-compute and more discriminative similarity measure in spatial-feature spaces. The new similarity measure allows the mean shift algorithm to track more general motion models in an integrated way. To reduce the complexity of the computation to linear order we employ the recently proposed improved fast Gauss transform. This leads to a very efficient and robust nonparametric spatial-feature tracking algorithm. The algorithm is tested on several image sequences and shown to achieve robust and reliable frame-rate tracking.
Author Duraiswami, R.
Changjiang Yang
Davis, L.
Author_xml – sequence: 1
  surname: Changjiang Yang
  fullname: Changjiang Yang
  organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA
– sequence: 2
  givenname: R.
  surname: Duraiswami
  fullname: Duraiswami, R.
  organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA
– sequence: 3
  givenname: L.
  surname: Davis
  fullname: Davis, L.
  organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA
BookMark eNpNjL1OwzAYRS0oEm3pyMTiF0jwf2I2FLWAVAmEgLXyz2f4oDEoDqC-PSAYuMsZztGdkUl-zUDIMWc158yedg83t7VgTNdc2j0y5czIylhu98mMNcZqIRshJv_EIVmU8sy-J61slZiSs2VKGBDySHtwuSpPmEY6Di68YH6kH-iooxk-acEet27AcfcTlvcBjshBctsCiz_Oyf1qedddVuvri6vufF2hUHysEg8QXWTCW8-F1QABvARjRGqjMrbVUhvjfPCqBad0tDFGH4KTktuWCTknJ7-_CACbtwF7N-w2XJlGGC2_ACzuSyk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.139
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 183 vol. 1
ExternalDocumentID 1467265
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-f1cedad02b9b1295eeceb3e662f8d469853566abcb48ea45d9dddbcca33198023
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-f1cedad02b9b1295eeceb3e662f8d469853566abcb48ea45d9dddbcca33198023
ParticipantIDs ieee_primary_1467265
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.1229303
Snippet The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity...
SourceID ieee
SourceType Publisher
StartPage 176
SubjectTerms Density measurement
Extraterrestrial measurements
Gaussian processes
Histograms
Image sequences
Improved fast Gauss transform
Kernel
Mean-shift algorithm
Motion measurement
Robustness
Similarity measure
Spatial-feature tracking
Target tracking
Testing
Title Efficient mean-shift tracking via a new similarity measure
URI https://ieeexplore.ieee.org/document/1467265
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx5doNt2ab0SCDHBECOGG9lXY2MoBooHf70z2wfGePDWnTZNd7ubme_bnW8IuVNS-p72LAPfBgBF2YApEflsmCjNByLxdIJ8x-xJTBfB4zJcNsh9nQtjrXWHz2wPL91evtnoPVJlfVzVXIRN0gTgVuRq1XwK5phGJczDtg_IRsT1jgLHaixu51P4TMReXED4OMQbvFTiqdrxQYyzP3qdPxfUi4cFxX-UYHEeaNIms-rbi4Mn7719rnr665es4387d0y6h1w_Oq-92Alp2OyUtMvglJZLfwemqv5DZeuQh7HTn4DX0rWVGdu9pUlO863UyL_Tz1RSSSFsp7t0nQKChoAfH0ROsksWk_HLaMrKWgwsBR-fM_hp1kgz4CpWECKE1mqA4VYInkQGq1CGPgSGUmkVRFYGoYmNMQqmhw9rHEXmzkgr22T2nFDLwSyjxIQ8CYLEB8AlUTdQGxMMlfAuSAdHZ_VRyG2syoG5_Nt8RY6cmqpjRa5JK9_u7Q3ECbm6dRPkGz6etR4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_DoAn0trVcCQQVCDBhuZF-NjaEYKB789c70hTEevHWnTdPd7mbm-3bnG0LupBCOpSzDwLcBQJHGZZL7DuuEUtltHloqRL5jNOaDmfs09-YVcl_mwhhj0sNnpomX6V6-XqktUmUtXNU29_bIvofJuFm2VsmoYJapnwM9bDuAbXhQ7inYWI8l3fvkDuOBFWQgPvDwhp1r8RTtYCfH2eq-Tl4y8sXCkuI_irCkPqhfI6Pi67OjJ-_NbSKb6uuXsON_u3dEGrtsPzop_dgxqZj4hNTy8JTmi38DpqICRGGrk4deqkABr6VLI2K2eYvChCZroZCBp5-RoIJC4E430TICDA0hPz6IrGSDzPq9aXfA8moMLAIvnzD4bUYL3bZlICFI8IxRAMQN53boa6xD6TkQGgqppOsb4Xo60FpLmCAOrHKUmTsl1XgVmzNCjQ1m4Yfas0PXDR2AXAKVA5XWbkdy65zUcXQWH5ngxiIfmIu_zbfkYDAdDRfDx_HzJTlMtVVTjuSKVJP11lxD1JDIm3SyfAPm2Lhm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Efficient+mean-shift+tracking+via+a+new+similarity+measure&rft.au=Changjiang+Yang&rft.au=Duraiswami%2C+R.&rft.au=Davis%2C+L.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=176&rft.epage=183+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.139&rft.externalDocID=1467265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon