"Learning-Compression" Algorithms for Neural Net Pruning

Pruning a neural net consists of removing weights without degrading its performance. This is an old problem of renewed interest because of the need to compress ever larger nets so they can run in mobile devices. Pruning has been traditionally done by ranking or penalizing weights according to some c...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 8532 - 8541
Main Authors Carreira-Perpinan, Miguel A., Idelbayev, Yerlan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pruning a neural net consists of removing weights without degrading its performance. This is an old problem of renewed interest because of the need to compress ever larger nets so they can run in mobile devices. Pruning has been traditionally done by ranking or penalizing weights according to some criterion (such as magnitude), removing low-ranked weights and retraining the remaining ones. We formulate pruning as an optimization problem of finding the weights that minimize the loss while satisfying a pruning cost condition. We give a generic algorithm to solve this which alternates "learning" steps that optimize a regularized, data-dependent loss and "compression" steps that mark weights for pruning in a data-independent way. Magnitude thresholding arises naturally in the compression step, but unlike existing magnitude pruning approaches, our algorithm explores subsets of weights rather than committing irrevocably to a specific subset from the beginning. It is also able to learn automatically the best number of weights to prune in each layer of the net without incurring an exponentially costly model selection. Using a single pruning-level user parameter, we achieve state-of-the-art pruning in LeNet and ResNets of various sizes.
AbstractList Pruning a neural net consists of removing weights without degrading its performance. This is an old problem of renewed interest because of the need to compress ever larger nets so they can run in mobile devices. Pruning has been traditionally done by ranking or penalizing weights according to some criterion (such as magnitude), removing low-ranked weights and retraining the remaining ones. We formulate pruning as an optimization problem of finding the weights that minimize the loss while satisfying a pruning cost condition. We give a generic algorithm to solve this which alternates "learning" steps that optimize a regularized, data-dependent loss and "compression" steps that mark weights for pruning in a data-independent way. Magnitude thresholding arises naturally in the compression step, but unlike existing magnitude pruning approaches, our algorithm explores subsets of weights rather than committing irrevocably to a specific subset from the beginning. It is also able to learn automatically the best number of weights to prune in each layer of the net without incurring an exponentially costly model selection. Using a single pruning-level user parameter, we achieve state-of-the-art pruning in LeNet and ResNets of various sizes.
Author Carreira-Perpinan, Miguel A.
Idelbayev, Yerlan
Author_xml – sequence: 1
  givenname: Miguel A.
  surname: Carreira-Perpinan
  fullname: Carreira-Perpinan, Miguel A.
– sequence: 2
  givenname: Yerlan
  surname: Idelbayev
  fullname: Idelbayev, Yerlan
BookMark eNotjj1PwzAUAA0CiVIyM7BE3ROe7cR-HquILymCCgFr9eI4xShNKjsd-PcEwXTL6XSX7GwYB8fYNYecczC31cfmNRfAMQdAAycsMRp5KVGpQoA5ZQsOSmbKcHPBkhi_AEAolFiUC4ar2lEY_LDLqnF_CC5GPw6rdN3vxuCnz31MuzGkz-4YqJ8xpZtw_NWv2HlHfXTJP5fs_f7urXrM6peHp2pdZ14UfMrajjreWdEK6TSfr8qG9PxFBVnULVhDjWoklEIYAmuVs9jaVgsy5JQt5JLd_HW9c257CH5P4XuLpUaDKH8AQHhJNg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00890
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 8541
ExternalDocumentID 8578988
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-dfaf1fc2d23e711535ba7642a4ac87d0c9ab6b305229a0cc6ec8dcd72a9ae6c43
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-dfaf1fc2d23e711535ba7642a4ac87d0c9ab6b305229a0cc6ec8dcd72a9ae6c43
PageCount 10
ParticipantIDs ieee_primary_8578988
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.51217
Snippet Pruning a neural net consists of removing weights without degrading its performance. This is an old problem of renewed interest because of the need to compress...
SourceID ieee
SourceType Publisher
StartPage 8532
SubjectTerms Mobile handsets
Neural networks
Neurons
Optimization
Performance evaluation
Quantization (signal)
Training
Title "Learning-Compression" Algorithms for Neural Net Pruning
URI https://ieeexplore.ieee.org/document/8578988
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTp5QwfidhXi0wNqxvh4NkRATDTFiuJF-DYk4DGwX_3rbbUJiPHhqu3TLy-va9177e78C3MQ8EpxiSLQRSCKGA4JaSSKpsTqUKjSqYPt8isfT6GE2mNXgdpcLY60twGe266vFWb5Z69xvlfXQ_V4CsQ51F7iVuVq7_RQaI8PqhMy3mYtsYoEVm0_YF73h6-TZY7k8eBKLNXh_nUphTUZNePyRowSRvHfzTHX11y-Kxv8Kegjtfd5eMNlZpCOo2fQYmpWjGVTTeNsC7FS0qgvi14MSCpt2grvVYr1ZZm8f28D5soEn7pArV2Tuq7nv3obp6P5lOCbVFQpk6UxzRkwikzDR1FBmuXP-2EBJ7kIOGUmN3PS1kCpWbs5TKmRf69hqNNpw6km7Yx2xE2ik69SeQsAStCiMpKEMI6Ot4kYmNnKaNda9r86g5RUx_yxZMuaVDs7_fnwBB34oStDVJTSyTW6vnHnP1HUxrt9BhaUN
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYzfLsSjQ9qN7fVoiAQVCDFguJF-DYk4DGwX_3rbbUJiPHjq2mxL8_rxe21_71eAmyD0WUiRuFIxdH0PWy5KwV1OlZaEC6JEpvY5CLpj_2nSmpTgdhMLo7XOyGe6YR-zs3y1lKndKrtD070Y4g7sGtxvkTxaa7OjQgP0sDgjs3nPrG0ChoWeD2myu_br8MWyuSx9ErNZeHuhSoYnnQr0f2qS00jeG2kiGvLrl0jjf6t6ALVt5J4z3GDSIZR0fASVwtV0ioG8rgLWC2HVmWtnhJwMG9ed-8VsuZonbx9rx3izjpXu4AuTJOavqX29BuPOw6jddYtLFNy5AefEVRGPSCSpop4OjfvntQQPzaKD-1xiqJqScREIM-opZbwpZaAlKqlCamW7A-l7x1COl7E-AceLUCNTnBJOfCW1CBWPtG8sq7T5XpxC1Rpi-pnrZEwLG5z9XXwNe91RvzftPQ6ez2HfNktOwbqAcrJK9aUB-0RcZW38DQ-OqFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=%22Learning-Compression%22+Algorithms+for+Neural+Net+Pruning&rft.au=Carreira-Perpinan%2C+Miguel+A.&rft.au=Idelbayev%2C+Yerlan&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8532&rft.epage=8541&rft_id=info:doi/10.1109%2FCVPR.2018.00890&rft.externalDocID=8578988