Local discriminant embedding and its variants
We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class relations of data are used to construct the embedding for classification problems. The proposed algorithm learns the embedding for the subma...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 846 - 853 vol. 2 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class relations of data are used to construct the embedding for classification problems. The proposed algorithm learns the embedding for the submanifold of each class by solving an optimization problem. After being embedded into a low-dimensional subspace, data points of the same class maintain their intrinsic neighbor relations, whereas neighboring points of different classes no longer stick to one another. Via embedding, new test data are thus more reliably classified by the nearest neighbor rule, owing to the locally discriminating nature. We also describe two useful variants: two-dimensional LDE and kernel LDE. Comprehensive comparisons and extensive experiments on face recognition are included to demonstrate the effectiveness of our method. |
---|---|
AbstractList | We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class relations of data are used to construct the embedding for classification problems. The proposed algorithm learns the embedding for the submanifold of each class by solving an optimization problem. After being embedded into a low-dimensional subspace, data points of the same class maintain their intrinsic neighbor relations, whereas neighboring points of different classes no longer stick to one another. Via embedding, new test data are thus more reliably classified by the nearest neighbor rule, owing to the locally discriminating nature. We also describe two useful variants: two-dimensional LDE and kernel LDE. Comprehensive comparisons and extensive experiments on face recognition are included to demonstrate the effectiveness of our method. |
Author | Tyng-Luh Liu Hwann-Tzong Chen Huang-Wei Chang |
Author_xml | – sequence: 1 surname: Hwann-Tzong Chen fullname: Hwann-Tzong Chen organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan – sequence: 2 surname: Huang-Wei Chang fullname: Huang-Wei Chang organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan – sequence: 3 surname: Tyng-Luh Liu fullname: Tyng-Luh Liu organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan |
BookMark | eNpNjs1KAzEYRYNWsK1dunKTF5gx35e_yVIGrcKAIuq25FcibSqTQfDtHdCFZ3MXBy5nRRblWCIhl8BaAGau-7en5xYZky2COiFLYIo3yoA5JSumlZHINeLinzgnm1o_2Aw3vBO4JM1w9HZPQ65-zIdcbJloPLgYQi7v1JZA81Tplx3zbOoFOUt2X-Pmb9fk9e72pb9vhsftQ38zNBkFTE2wSYB22hultBHep6R8FJJ1zocghO4weUTHICXHXZLSC-xAsS54bhXna3L1-5tjjLvPucyO3zsQSksO_AfB_UXR |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.216 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 853 vol. 2 |
ExternalDocumentID | 1467531 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-daf417b7c966794ccff6ce4508bcdd44782fc22b01ffb3bf55c4281608dc3a633 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-daf417b7c966794ccff6ce4508bcdd44782fc22b01ffb3bf55c4281608dc3a633 |
ParticipantIDs | ieee_primary_1467531 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 2.17726 |
Snippet | We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 846 |
SubjectTerms | Face recognition Information science Kernel Linear discriminant analysis Maintenance Nearest neighbor searches Pattern classification Principal component analysis Testing Training data |
Title | Local discriminant embedding and its variants |
URI | https://ieeexplore.ieee.org/document/1467531 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXh022RfyZ6LpYiVIlZ6K_uEIkaxqQd_vbubR0U8eMtuICRLhplvZr75ALhm1nCVyRw5ajJEtVRImMwiKrhQTHGreCAnzx74dEHvlmzZATctF8ZaG5vP7DBcxlq-edPbkCobBatmgTS954FbxdVq8ymBY5rXMC-siUc2XLQVBRzUWGLlkxPERSoqCC9YuIHrSTzNWuyGcY7Gz_PHKvWCgyb6DwmW6IEmPTBr3r1qPHkZbks11F-_xjr-9-MOwGDH9YPz1osdgo4tjkCvDk5hbfobv9XoPzR7fYDugyOEgdhbiYMVJbSvyprwJCgLA9flBn56NB6abQZgMbl9Gk9RLb-A1t6tl8hIR9NMZdojIm-1WjvHtaU-olPaGEp9bOE0xipJnVNEOca0xzIpT3KjieSEHINu8VbYEwAJT7CUglGCCc2pkJbijBmXUOsk4-oU9MOBrN6rCRur-izO_t4-B_txgGpMhFyAbvmxtZc-NCjVVfwnvgGiP694 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPOgJFYxve_DoQruvds9EggqEGDDcyD4TYixGigd_vbt9YYwHb91t0rSbTma-mfnmA-CWGs1kLBJoiY4hUUJCrmMDCWdcUsmMZJ6cPJ6w4Zw8LuiiAe5qLowxJm8-M11_mdfy9Vptfaqs562aetL0nvP7FBVsrTqj4lmmSQn0_Bo7bMN4XVNAXo8lr30yDBmPeAHiOfU3UDmLp1rz3TjOXv9l-lwkX5BXRf8hwpL7oEELjKu3L1pPXrvbTHbV16_Bjv_9vEPQ2bH9gmntx45Aw6THoFWGp0Fp_Bu3VSlAVHttAEfeFQae2lvIg6VZYN6k0f5JgUh1sMo2wafD477dpgPmg_tZfwhLAQa4co49g1pYEsUyVg4TObtVylqmDHExnVRaE-KiC6sQkmFkrcTSUqocmolYmGiFBcP4BDTTdWpOQYBZiITglGCESUK4MATFVNuQGCsok2eg7Q9k-V7M2FiWZ3H-9_YN2B_OxqPl6GHydAEO8nGqeVrkEjSzj625coFCJq_z_-MbB0Sywg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Local+discriminant+embedding+and+its+variants&rft.au=Hwann-Tzong+Chen&rft.au=Huang-Wei+Chang&rft.au=Tyng-Luh+Liu&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=846&rft.epage=853+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.216&rft.externalDocID=1467531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |