Local discriminant embedding and its variants

We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class relations of data are used to construct the embedding for classification problems. The proposed algorithm learns the embedding for the subma...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 846 - 853 vol. 2
Main Authors Hwann-Tzong Chen, Huang-Wei Chang, Tyng-Luh Liu
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class relations of data are used to construct the embedding for classification problems. The proposed algorithm learns the embedding for the submanifold of each class by solving an optimization problem. After being embedded into a low-dimensional subspace, data points of the same class maintain their intrinsic neighbor relations, whereas neighboring points of different classes no longer stick to one another. Via embedding, new test data are thus more reliably classified by the nearest neighbor rule, owing to the locally discriminating nature. We also describe two useful variants: two-dimensional LDE and kernel LDE. Comprehensive comparisons and extensive experiments on face recognition are included to demonstrate the effectiveness of our method.
AbstractList We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class relations of data are used to construct the embedding for classification problems. The proposed algorithm learns the embedding for the submanifold of each class by solving an optimization problem. After being embedded into a low-dimensional subspace, data points of the same class maintain their intrinsic neighbor relations, whereas neighboring points of different classes no longer stick to one another. Via embedding, new test data are thus more reliably classified by the nearest neighbor rule, owing to the locally discriminating nature. We also describe two useful variants: two-dimensional LDE and kernel LDE. Comprehensive comparisons and extensive experiments on face recognition are included to demonstrate the effectiveness of our method.
Author Tyng-Luh Liu
Hwann-Tzong Chen
Huang-Wei Chang
Author_xml – sequence: 1
  surname: Hwann-Tzong Chen
  fullname: Hwann-Tzong Chen
  organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
– sequence: 2
  surname: Huang-Wei Chang
  fullname: Huang-Wei Chang
  organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
– sequence: 3
  surname: Tyng-Luh Liu
  fullname: Tyng-Luh Liu
  organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
BookMark eNpNjs1KAzEYRYNWsK1dunKTF5gx35e_yVIGrcKAIuq25FcibSqTQfDtHdCFZ3MXBy5nRRblWCIhl8BaAGau-7en5xYZky2COiFLYIo3yoA5JSumlZHINeLinzgnm1o_2Aw3vBO4JM1w9HZPQ65-zIdcbJloPLgYQi7v1JZA81Tplx3zbOoFOUt2X-Pmb9fk9e72pb9vhsftQ38zNBkFTE2wSYB22hultBHep6R8FJJ1zocghO4weUTHICXHXZLSC-xAsS54bhXna3L1-5tjjLvPucyO3zsQSksO_AfB_UXR
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.216
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 853 vol. 2
ExternalDocumentID 1467531
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-daf417b7c966794ccff6ce4508bcdd44782fc22b01ffb3bf55c4281608dc3a633
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-daf417b7c966794ccff6ce4508bcdd44782fc22b01ffb3bf55c4281608dc3a633
ParticipantIDs ieee_primary_1467531
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.17726
Snippet We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class...
SourceID ieee
SourceType Publisher
StartPage 846
SubjectTerms Face recognition
Information science
Kernel
Linear discriminant analysis
Maintenance
Nearest neighbor searches
Pattern classification
Principal component analysis
Testing
Training data
Title Local discriminant embedding and its variants
URI https://ieeexplore.ieee.org/document/1467531
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXh022RfyZ6LpYiVIlZ6K_uEIkaxqQd_vbubR0U8eMtuICRLhplvZr75ALhm1nCVyRw5ajJEtVRImMwiKrhQTHGreCAnzx74dEHvlmzZATctF8ZaG5vP7DBcxlq-edPbkCobBatmgTS954FbxdVq8ymBY5rXMC-siUc2XLQVBRzUWGLlkxPERSoqCC9YuIHrSTzNWuyGcY7Gz_PHKvWCgyb6DwmW6IEmPTBr3r1qPHkZbks11F-_xjr-9-MOwGDH9YPz1osdgo4tjkCvDk5hbfobv9XoPzR7fYDugyOEgdhbiYMVJbSvyprwJCgLA9flBn56NB6abQZgMbl9Gk9RLb-A1t6tl8hIR9NMZdojIm-1WjvHtaU-olPaGEp9bOE0xipJnVNEOca0xzIpT3KjieSEHINu8VbYEwAJT7CUglGCCc2pkJbijBmXUOsk4-oU9MOBrN6rCRur-izO_t4-B_txgGpMhFyAbvmxtZc-NCjVVfwnvgGiP694
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPOgJFYxve_DoQruvds9EggqEGDDcyD4TYixGigd_vbt9YYwHb91t0rSbTma-mfnmA-CWGs1kLBJoiY4hUUJCrmMDCWdcUsmMZJ6cPJ6w4Zw8LuiiAe5qLowxJm8-M11_mdfy9Vptfaqs562aetL0nvP7FBVsrTqj4lmmSQn0_Bo7bMN4XVNAXo8lr30yDBmPeAHiOfU3UDmLp1rz3TjOXv9l-lwkX5BXRf8hwpL7oEELjKu3L1pPXrvbTHbV16_Bjv_9vEPQ2bH9gmntx45Aw6THoFWGp0Fp_Bu3VSlAVHttAEfeFQae2lvIg6VZYN6k0f5JgUh1sMo2wafD477dpgPmg_tZfwhLAQa4co49g1pYEsUyVg4TObtVylqmDHExnVRaE-KiC6sQkmFkrcTSUqocmolYmGiFBcP4BDTTdWpOQYBZiITglGCESUK4MATFVNuQGCsok2eg7Q9k-V7M2FiWZ3H-9_YN2B_OxqPl6GHydAEO8nGqeVrkEjSzj625coFCJq_z_-MbB0Sywg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Local+discriminant+embedding+and+its+variants&rft.au=Hwann-Tzong+Chen&rft.au=Huang-Wei+Chang&rft.au=Tyng-Luh+Liu&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=846&rft.epage=853+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.216&rft.externalDocID=1467531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon