Discovery of Collocation Patterns: from Visual Words to Visual Phrases

A visual word lexicon can be constructed by clustering primitive visual features, and a visual object can be described by a set of visual words. Such a "bag-of-words" representation has led to many significant results in various vision tasks including object recognition and categorization....

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8
Main Authors Junsong Yuan, Ying Wu, Ming Yang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2007
Subjects
Online AccessGet full text
ISBN9781424411795
1424411793
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2007.383222

Cover

More Information
Summary:A visual word lexicon can be constructed by clustering primitive visual features, and a visual object can be described by a set of visual words. Such a "bag-of-words" representation has led to many significant results in various vision tasks including object recognition and categorization. However, in practice, the clustering of primitive visual features tends to result in synonymous visual words that over-represent visual patterns, as well as polysemous visual words that bring large uncertainties and ambiguities in the representation. This paper aims at generating a higher-level lexicon, i.e. visual phrase lexicon, where a visual phrase is a meaningful spatially co-occurrent pattern of visual words. This higher-level lexicon is much less ambiguous than the lower-level one. The contributions of this paper include: (1) a fast and principled solution to the discovery of significant spatial co-occurrent patterns using frequent itemset mining; (2) a pattern summarization method that deals with the compositional uncertainties in visual phrases; and (3) a top-down refinement scheme of the visual word lexicon by feeding back discovered phrases to tune the similarity measure through metric learning.
ISBN:9781424411795
1424411793
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2007.383222