An Analysis of Scale Invariance in Object Detection - SNIP

An analysis of different techniques for recognizing and detecting objects under extreme scale variation is presented. Scale specific and scale invariant design of detectors are compared by training them with different configurations of input data. By evaluating the performance of different network a...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3578 - 3587
Main Authors Singh, Bharat, Davis, Larry S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An analysis of different techniques for recognizing and detecting objects under extreme scale variation is presented. Scale specific and scale invariant design of detectors are compared by training them with different configurations of input data. By evaluating the performance of different network architectures for classifying small objects on ImageNet, we show that CNNs are not robust to changes in scale. Based on this analysis, we propose to train and test detectors on the same scales of an image-pyramid. Since small and large objects are difficult to recognize at smaller and larger scales respectively, we present a novel training scheme called Scale Normalization for Image Pyramids (SNIP) which selectively back-propagates the gradients of object instances of different sizes as a function of the image scale. On the COCO dataset, our single model performance is 45.7% and an ensemble of 3 networks obtains an mAP of 48.3%. We use off-the-shelf ImageNet-1000 pre-trained models and only train with bounding box supervision. Our submission won the Best Student Entry in the COCO 2017 challenge. Code will be made available at http://bit.ly/2yXVg4c.
AbstractList An analysis of different techniques for recognizing and detecting objects under extreme scale variation is presented. Scale specific and scale invariant design of detectors are compared by training them with different configurations of input data. By evaluating the performance of different network architectures for classifying small objects on ImageNet, we show that CNNs are not robust to changes in scale. Based on this analysis, we propose to train and test detectors on the same scales of an image-pyramid. Since small and large objects are difficult to recognize at smaller and larger scales respectively, we present a novel training scheme called Scale Normalization for Image Pyramids (SNIP) which selectively back-propagates the gradients of object instances of different sizes as a function of the image scale. On the COCO dataset, our single model performance is 45.7% and an ensemble of 3 networks obtains an mAP of 48.3%. We use off-the-shelf ImageNet-1000 pre-trained models and only train with bounding box supervision. Our submission won the Best Student Entry in the COCO 2017 challenge. Code will be made available at http://bit.ly/2yXVg4c.
Author Davis, Larry S.
Singh, Bharat
Author_xml – sequence: 1
  givenname: Bharat
  surname: Singh
  fullname: Singh, Bharat
– sequence: 2
  givenname: Larry S.
  surname: Davis
  fullname: Davis, Larry S.
BookMark eNotzE1LwzAYAOAoCs7Zswcv-QOteZM0H95K_SoMN5x6HUnzBjJqKu0Q9u8V9PTcnktylseMhFwDqwCYvW0_Nq8VZ2AqxoTWJ6Sw2kAtjFKSM3tKFsCUKJUFe0GKed4zxrgywsh6Qe6aTJvshuOcZjpGuu3dgLTL325KLvdIU6Zrv8f-QO_x8EsaMy3p9qXbXJHz6IYZi3-X5P3x4a19Llfrp65tVmXiEg5lUNJZJ01vlMfgIFrwWgkIOvJgpXHRcatDz6X2YDFIHzwKHiBwMCxasSQ3f29CxN3XlD7ddNyZWhupa_EDEf1ITw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00377
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 3587
ExternalDocumentID 8578475
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-d64a9a48c86beda1f91b7631d7f2d948afa297dc247b19ed4bdbe32d1d2180f93
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-d64a9a48c86beda1f91b7631d7f2d948afa297dc247b19ed4bdbe32d1d2180f93
PageCount 10
ParticipantIDs ieee_primary_8578475
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.597155
Snippet An analysis of different techniques for recognizing and detecting objects under extreme scale variation is presented. Scale specific and scale invariant design...
SourceID ieee
SourceType Publisher
StartPage 3578
SubjectTerms Convolution
Detectors
Feature extraction
Image resolution
Object detection
Semantics
Training
Title An Analysis of Scale Invariance in Object Detection - SNIP
URI https://ieeexplore.ieee.org/document/8578475
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6AkydUML7Tg0cL7Lb04c2gBExAomK4kW1nNiEmi9HFg7_edlkwGg_e-ji06evrzHwzQ8gFJjL1sIpMxVIz4SQwq7hh4LhxscdEXmQtGY3lYCruZt1ZhVxufWEQsSCfYSsUC1s-LN0qqMra2h8vobpVUvWC29pXa6tP8UNxXVrIQp17yUYaXUbziTqm3XuePAQuVyBPcvUznUqBJv06GW3msSaRvLRWuW25z18hGv870V3S_Pbbo5MtIu2RCmb7pF5-NGl5jd8b5Oo6o5toJHSZ-h4PE3SYfXjBOZwCusjovQ0aGnqDeUHWyiijj-PhpEmm_dun3oCVSRTYwoNzzkCKxCRCOy0tQhKlJrL-TYlApTEYoZM0iY0CFwtlI4MgLFjkMUTgwb-TGn5Aatkyw0NCjUSAkAJQuNT_slQSKy0BkeuOhaibHpFGWIr56zpOxrxcheO_m0_ITtiMNe3qlNTytxWeeYDP7Xmxs1_nk6LY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxIOeUMH42x48WqBr1x_eDEpAAYmC4UbWXwkxGUaHB_962zEwGg_euvawpu32aV-_7z0ALmzCnMeqRTxiAlHNDFKcSGQ0kTryTCR51pL-gHXG9G4ST0rgcu0LY63NxWe2Hor5Xb6Z60UwlTWEX16Uxxtg03M_xktvrbVFxb-MiOKOLDwTf7ZhUhTxfHBTNlrPw8eg5gryScJ_JlTJedKugP6qJ0sZyUt9kam6_vwVpPG_Xd0BtW_PPThcM2kXlGy6ByrFVhMWH_J7FVxdp3AVjwTOnW_xoIDd9MMfncM6gLMUPqhgo4E3NsvlWilE8GnQHdbAuH07anVQkUYBzTyeM2QYTWRChRZMWZNgJ7HyfxVsuIuMpCJxSSS50RHlCktrqDLKkshg4_HfdJLsg3I6T-0BgJJZY0ISQKqd32fxJOKCGWuJaCqDY3cIqmEopq_LSBnTYhSO_q4-B1udUb837XUH98dgO0zMUoR1AsrZ28Keetxn6iyf5S-auqYh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=An+Analysis+of+Scale+Invariance+in+Object+Detection+-+SNIP&rft.au=Singh%2C+Bharat&rft.au=Davis%2C+Larry+S.&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3578&rft.epage=3587&rft_id=info:doi/10.1109%2FCVPR.2018.00377&rft.externalDocID=8578475