Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images

We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered indoor scenes, and evaluate our approach on the recently introduced NYU-Depth V2 (NYUD2) dataset [27]. We propose algorithms for object bounda...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 564 - 571
Main Authors Gupta, Saurabh, Arbelaez, Pablo, Malik, Jitendra
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2013.79

Cover

Loading…
Abstract We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered indoor scenes, and evaluate our approach on the recently introduced NYU-Depth V2 (NYUD2) dataset [27]. We propose algorithms for object boundary detection and hierarchical segmentation that generalize the gPb-ucm approach of [2] by making effective use of depth information. We show that our system can label each contour with its type (depth, normal or albedo). We also propose a generic method for long-range amodal completion of surfaces and show its effectiveness in grouping. We then turn to the problem of semantic segmentation and propose a simple approach that classifies super pixels into the 40 dominant object categories in NYUD2. We use both generic and class-specific features to encode the appearance and geometry of objects. We also show how our approach can be used for scene classification, and how this contextual information in turn improves object recognition. In all of these tasks, we report significant improvements over the state-of-the-art.
AbstractList We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered indoor scenes, and evaluate our approach on the recently introduced NYU-Depth V2 (NYUD2) dataset [27]. We propose algorithms for object boundary detection and hierarchical segmentation that generalize the gPb-ucm approach of [2] by making effective use of depth information. We show that our system can label each contour with its type (depth, normal or albedo). We also propose a generic method for long-range amodal completion of surfaces and show its effectiveness in grouping. We then turn to the problem of semantic segmentation and propose a simple approach that classifies super pixels into the 40 dominant object categories in NYUD2. We use both generic and class-specific features to encode the appearance and geometry of objects. We also show how our approach can be used for scene classification, and how this contextual information in turn improves object recognition. In all of these tasks, we report significant improvements over the state-of-the-art.
Author Gupta, Saurabh
Malik, Jitendra
Arbelaez, Pablo
Author_xml – sequence: 1
  givenname: Saurabh
  surname: Gupta
  fullname: Gupta, Saurabh
  email: sgupta@eecs.berkeley.edu
  organization: Univ. of California, Berkeley, Berkeley, CA, USA
– sequence: 2
  givenname: Pablo
  surname: Arbelaez
  fullname: Arbelaez, Pablo
  email: arbelaez@eecs.berkeley.edu
  organization: Univ. of California, Berkeley, Berkeley, CA, USA
– sequence: 3
  givenname: Jitendra
  surname: Malik
  fullname: Malik, Jitendra
  email: malik@eecs.berkeley.edu
  organization: Univ. of California, Berkeley, Berkeley, CA, USA
BookMark eNpNj7tOwzAYRg0qEm3pxsbiF0jwJb6NEEoJqtQqXNbKcX5HQY1dOWWApwcBA9N3znKkb4YmIQZA6JKSnFJirsvXbZ0zQnmuzAlaGKWp4FoKqRg_RVNKJM-koWbyj8_RbBzfCGFcMTJFj1tIDg7Hd7vHm9TZ0H_aYx8DtqHFNbjYhf7Ho8dVaGNM-MlBgBH7FAdcr26zO1wNtoPxAp15ux9h8bdz9HK_fC4fsvVmVZU366xnBT1mLXON91RpIZyHRisllNSt4bKhxihRcMXBgfHfbxrNHJXMt0ZZy2yhiwL4HF39dnsA2B1SP9j0sZOSasM4_wL3qk77
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2013.79
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781538656723
1538656728
EISSN 1063-6919
EndPage 571
ExternalDocumentID 6618923
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-d2cbff17855cfeb8775768d936b199754373ece9f781b82c162fd97aa2a4844e3
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Wed Aug 27 02:59:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-d2cbff17855cfeb8775768d936b199754373ece9f781b82c162fd97aa2a4844e3
PageCount 8
ParticipantIDs ieee_primary_6618923
PublicationCentury 2000
PublicationDate 2013-06
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06
PublicationDecade 2010
PublicationTitle 2013 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.4539776
Snippet We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered...
SourceID ieee
SourceType Publisher
StartPage 564
SubjectTerms Benchmark testing
Gravity
Image color analysis
Image segmentation
RGBD Recognition
RGBD Segmentation
Semantics
Shape
Three-dimensional displays
Title Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images
URI https://ieeexplore.ieee.org/document/6618923
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhx2ySOP1YKpa1UVFUUdasc-yIhIEE0Wfj12PkqQgxsiaVIlhX7vfO9d4fQtcc5xGAiYsHYJ1TSkCjFPCJAsEAZC3rgvMPzRzZZ0dk6XLfQTeOFAYBCfAZ991jk8k2qc3dVNrBYIiwh2UN7NnArvVrNfUpgIxkmmwyC77qvFJlOFhAmPdmI3uVg9LxYOlFX0C8EXLumKgWmjDtoXs-mlJK89vMs6uuvX4Ua_zvdA9TbuffwosGlQ9SC5Ah1KrqJq828tUN1R4d6rItmi1Lnkqs3_NOliVVi8LLWGtn3NMbTxKSp-9adltjZVPDy4Zbc4em7PaO2PbQa3z-NJqTqtkBeLIpnxPg6imOPizDUMUSCcxeKGBmwyIlRQlcDCTTImFumK3ztMT82kivlKyooheAYtZM0gROENYehttRxqEJKlRAylJ6vYsvkQiF5EJyirlutzUdZUGNTLdTZ38PnaN8ve1CQoXeB2tlnDpeWCWTRVfELfAM5uK8W
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pCBeNve_Boga3r2l5FERAIIWC4ka5rE6NuRraLf73tfmGMB2_blyxpmrXvtd973wfAjUOp0ioMkAFjF3ncI0gI30FMMR-L0ICest7hydQfLL3Riqxq4LbywiilMvGZatvHLJcfxjK1V2UdgyXMEJIdsEusGTd3a1U3KticZXxe5RBc238ly3X6GPnc4ZXsnXd6z7O5lXXhdibh2rZVyVCl3wCTcjy5mOS1nSZBW379KtX43wEfgNbWvwdnFTIdgpqKjkCjIJywWM4bEyp7OpSxJhjNcqVLKt7gT58mFFEI56XayLzHGg6jMI7tt3a_hNaoAuePd-geDt_NLrVpgWX_YdEboKLfAnoxOJ6g0JWB1g5lhEitAkapPYyEHPuBlaMQWwVJScU1NVyXudLxXR1yKoQrPOZ5Ch-DehRH6gRASVVXGvLYFcTzBGOccMcV2nA5wjjF-BQ07WytP_KSGutios7-Dl-DvcFiMl6Ph9Onc7Dv5h0pUNe5APXkM1WXhhckwVX2O3wDjcCyXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Perceptual+Organization+and+Recognition+of+Indoor+Scenes+from+RGB-D+Images&rft.au=Gupta%2C+Saurabh&rft.au=Arbelaez%2C+Pablo&rft.au=Malik%2C+Jitendra&rft.date=2013-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=564&rft.epage=571&rft_id=info:doi/10.1109%2FCVPR.2013.79&rft.externalDocID=6618923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon