Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images
We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered indoor scenes, and evaluate our approach on the recently introduced NYU-Depth V2 (NYUD2) dataset [27]. We propose algorithms for object bounda...
Saved in:
Published in | 2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 564 - 571 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2013.79 |
Cover
Loading…
Abstract | We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered indoor scenes, and evaluate our approach on the recently introduced NYU-Depth V2 (NYUD2) dataset [27]. We propose algorithms for object boundary detection and hierarchical segmentation that generalize the gPb-ucm approach of [2] by making effective use of depth information. We show that our system can label each contour with its type (depth, normal or albedo). We also propose a generic method for long-range amodal completion of surfaces and show its effectiveness in grouping. We then turn to the problem of semantic segmentation and propose a simple approach that classifies super pixels into the 40 dominant object categories in NYUD2. We use both generic and class-specific features to encode the appearance and geometry of objects. We also show how our approach can be used for scene classification, and how this contextual information in turn improves object recognition. In all of these tasks, we report significant improvements over the state-of-the-art. |
---|---|
AbstractList | We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered indoor scenes, and evaluate our approach on the recently introduced NYU-Depth V2 (NYUD2) dataset [27]. We propose algorithms for object boundary detection and hierarchical segmentation that generalize the gPb-ucm approach of [2] by making effective use of depth information. We show that our system can label each contour with its type (depth, normal or albedo). We also propose a generic method for long-range amodal completion of surfaces and show its effectiveness in grouping. We then turn to the problem of semantic segmentation and propose a simple approach that classifies super pixels into the 40 dominant object categories in NYUD2. We use both generic and class-specific features to encode the appearance and geometry of objects. We also show how our approach can be used for scene classification, and how this contextual information in turn improves object recognition. In all of these tasks, we report significant improvements over the state-of-the-art. |
Author | Gupta, Saurabh Malik, Jitendra Arbelaez, Pablo |
Author_xml | – sequence: 1 givenname: Saurabh surname: Gupta fullname: Gupta, Saurabh email: sgupta@eecs.berkeley.edu organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 2 givenname: Pablo surname: Arbelaez fullname: Arbelaez, Pablo email: arbelaez@eecs.berkeley.edu organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 3 givenname: Jitendra surname: Malik fullname: Malik, Jitendra email: malik@eecs.berkeley.edu organization: Univ. of California, Berkeley, Berkeley, CA, USA |
BookMark | eNpNj7tOwzAYRg0qEm3pxsbiF0jwJb6NEEoJqtQqXNbKcX5HQY1dOWWApwcBA9N3znKkb4YmIQZA6JKSnFJirsvXbZ0zQnmuzAlaGKWp4FoKqRg_RVNKJM-koWbyj8_RbBzfCGFcMTJFj1tIDg7Hd7vHm9TZ0H_aYx8DtqHFNbjYhf7Ho8dVaGNM-MlBgBH7FAdcr26zO1wNtoPxAp15ux9h8bdz9HK_fC4fsvVmVZU366xnBT1mLXON91RpIZyHRisllNSt4bKhxihRcMXBgfHfbxrNHJXMt0ZZy2yhiwL4HF39dnsA2B1SP9j0sZOSasM4_wL3qk77 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2013.79 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781538656723 1538656728 |
EISSN | 1063-6919 |
EndPage | 571 |
ExternalDocumentID | 6618923 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-d2cbff17855cfeb8775768d936b199754373ece9f781b82c162fd97aa2a4844e3 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:59:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-d2cbff17855cfeb8775768d936b199754373ece9f781b82c162fd97aa2a4844e3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6618923 |
PublicationCentury | 2000 |
PublicationDate | 2013-06 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06 |
PublicationDecade | 2010 |
PublicationTitle | 2013 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0003211698 |
Score | 2.4539776 |
Snippet | We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 564 |
SubjectTerms | Benchmark testing Gravity Image color analysis Image segmentation RGBD Recognition RGBD Segmentation Semantics Shape Three-dimensional displays |
Title | Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images |
URI | https://ieeexplore.ieee.org/document/6618923 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhx2ySOP1YKpa1UVFUUdasc-yIhIEE0Wfj12PkqQgxsiaVIlhX7vfO9d4fQtcc5xGAiYsHYJ1TSkCjFPCJAsEAZC3rgvMPzRzZZ0dk6XLfQTeOFAYBCfAZ991jk8k2qc3dVNrBYIiwh2UN7NnArvVrNfUpgIxkmmwyC77qvFJlOFhAmPdmI3uVg9LxYOlFX0C8EXLumKgWmjDtoXs-mlJK89vMs6uuvX4Ua_zvdA9TbuffwosGlQ9SC5Ah1KrqJq828tUN1R4d6rItmi1Lnkqs3_NOliVVi8LLWGtn3NMbTxKSp-9adltjZVPDy4Zbc4em7PaO2PbQa3z-NJqTqtkBeLIpnxPg6imOPizDUMUSCcxeKGBmwyIlRQlcDCTTImFumK3ztMT82kivlKyooheAYtZM0gROENYehttRxqEJKlRAylJ6vYsvkQiF5EJyirlutzUdZUGNTLdTZ38PnaN8ve1CQoXeB2tlnDpeWCWTRVfELfAM5uK8W |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pCBeNve_Boga3r2l5FERAIIWC4ka5rE6NuRraLf73tfmGMB2_blyxpmrXvtd973wfAjUOp0ioMkAFjF3ncI0gI30FMMR-L0ICest7hydQfLL3Riqxq4LbywiilMvGZatvHLJcfxjK1V2UdgyXMEJIdsEusGTd3a1U3KticZXxe5RBc238ly3X6GPnc4ZXsnXd6z7O5lXXhdibh2rZVyVCl3wCTcjy5mOS1nSZBW379KtX43wEfgNbWvwdnFTIdgpqKjkCjIJywWM4bEyp7OpSxJhjNcqVLKt7gT58mFFEI56XayLzHGg6jMI7tt3a_hNaoAuePd-geDt_NLrVpgWX_YdEboKLfAnoxOJ6g0JWB1g5lhEitAkapPYyEHPuBlaMQWwVJScU1NVyXudLxXR1yKoQrPOZ5Ch-DehRH6gRASVVXGvLYFcTzBGOccMcV2nA5wjjF-BQ07WytP_KSGutios7-Dl-DvcFiMl6Ph9Onc7Dv5h0pUNe5APXkM1WXhhckwVX2O3wDjcCyXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Perceptual+Organization+and+Recognition+of+Indoor+Scenes+from+RGB-D+Images&rft.au=Gupta%2C+Saurabh&rft.au=Arbelaez%2C+Pablo&rft.au=Malik%2C+Jitendra&rft.date=2013-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=564&rft.epage=571&rft_id=info:doi/10.1109%2FCVPR.2013.79&rft.externalDocID=6618923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |