SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation
We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly e...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2569 - 2578 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2018.00272 |
Cover
Loading…
Abstract | We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly extract instance segmentation results. Important to the effectiveness of SGPN is its novel representation of 3D instance segmentation results in the form of a similarity matrix that indicates the similarity between each pair of points in embedded feature space, thus producing an accurate grouping proposal for each point. Experimental results on various 3D scenes show the effectiveness of our method on 3D instance segmentation, and we also evaluate the capability of SGPN to improve 3D object detection and semantic segmentation results. We also demonstrate its flexibility by seamlessly incorporating 2D CNN features into the framework to boost performance. |
---|---|
AbstractList | We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly extract instance segmentation results. Important to the effectiveness of SGPN is its novel representation of 3D instance segmentation results in the form of a similarity matrix that indicates the similarity between each pair of points in embedded feature space, thus producing an accurate grouping proposal for each point. Experimental results on various 3D scenes show the effectiveness of our method on 3D instance segmentation, and we also evaluate the capability of SGPN to improve 3D object detection and semantic segmentation results. We also demonstrate its flexibility by seamlessly incorporating 2D CNN features into the framework to boost performance. |
Author | Huang, Qiangui Wang, Weiyue Neumann, Ulrich Yu, Ronald |
Author_xml | – sequence: 1 givenname: Weiyue surname: Wang fullname: Wang, Weiyue – sequence: 2 givenname: Ronald surname: Yu fullname: Yu, Ronald – sequence: 3 givenname: Qiangui surname: Huang fullname: Huang, Qiangui – sequence: 4 givenname: Ulrich surname: Neumann fullname: Neumann, Ulrich |
BookMark | eNotzE1LwzAcgPEoCs7Zswcv-QKtSfPuTeqcgzGLVa8jbf-VaJeMNEP27RX09Fx-PJfozAcPCF1TUlBKzG31Xr8UJaG6IKRU5QnKjNJUMC0lL4k5RTNKJMuloeYCZdP0SX6d1ExzMUN1s6w3d7hxOzfa6NIRL2M47HEdwz5MdsQbSN8hfuEhRMwecB2cT7gaw6HHKz8l6zvADXzswCebXPBX6Hyw4wTZf-fo7XHxWj3l6-flqrpf567kNOU9taRlhre0tdxY28tWD4xIrZQB6LqOqR561cFghGRAuOhN2ypumBBKWMvm6Obv6wBgu49uZ-Nxq4XSTBH2A0qOUVw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00272 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 2578 |
ExternalDocumentID | 8578370 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i241t-d1a0b394b1ba49aad6b8f3068779eeccc37ded7cef9563e045d9bb74935575aa3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-d1a0b394b1ba49aad6b8f3068779eeccc37ded7cef9563e045d9bb74935575aa3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578370 |
PublicationCentury | 2000 |
PublicationDate | 2018-06 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06 |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5705242 |
Snippet | We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2569 |
SubjectTerms | Feature extraction Image segmentation Proposals Semantics Three-dimensional displays Two dimensional displays |
Title | SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation |
URI | https://ieeexplore.ieee.org/document/8578370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6byUcS3PDCSNomdOGYtlILUKqIUdavs2EERbVLRZOHXc3ZCQYiBKYmlyJbP1t07v3tG6EoZAZckcJ0UHg4NtHakkbvjgoY-EzRKraTQeBKOZvRxHsxb6HpbC6O1tuQz3TOv9ixfFUllUmX9CJYXYQDQdwC41bVa23yKH0Ykak7IzDcBZBPyqFHz8VzeH7zET4bLZcmTRhH4x3Uq1psMO2j8NY6aRPLWq0rZSz5-STT-d6B7qPtdt4fjrUfaRy2dH6BOE2jiZhtvDlE8vY8nN3iarTIAthCHY5uCMv-ui41Y4klNDscQ0WJyi-Miy0s8WBaVwg82noSOpvp11RQu5V00G949D0ZOc7WCk4HLLh3lCVcSTqUnBeVCqFBGKaCHiDGuwaoJYUorlugUDEc0xH2KS8moUWNngRDkCLXzItfHCBNPKOpq5Srt0TRNuQwSJvyEhYkPfagTdGgmaLGu1TMWzdyc_t18hnaNiWoy1jlql--VvgC3X8pLa-9PLmWsfw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRwUa7dfWKIigsi4DhRtq1M4uwEdku_vW23URjPHja1mRp09fmfe_1e18BuBZawCVybStWDwu7Ulpcy91Rhr0uYdiPjaTQOPAGM_w4d-c1cLOthZFSGvKZbOtXc5YvsqjQqbKOr5YXIipA31F-33XKaq1tRqXr-civzsj0N1KxjUf9Ss_HsWmn9xI-azaXoU9qTeAfF6oYf9JvgPHXSEoayVu7yHk7-vgl0vjfoe6D1nflHgy3PukA1GR6CBoV1ITVRt40QTh5CINbOElWiQptFRKHJgml_11nG7aEQUkPhwrTQnQHwyxJc9hbZoWAQ4MoVUcT-bqqSpfSFpj176e9gVVdrmAlymnnlnCYzRHF3OEMU8aEx_1YxQ8-IVQqu0aICClIJGNlOiQV8hOUc4K1HjtxGUNHoJ5mqTwGEDlMYFsKW0gHx3FMuRsR1o2IF3VVH-IENPUELdalfsaimpvTv5uvwO5gOh4tRsPg6QzsaXOV1KxzUM_fC3mhQEDOL43tPwFdlK_I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=SGPN%3A+Similarity+Group+Proposal+Network+for+3D+Point+Cloud+Instance+Segmentation&rft.au=Wang%2C+Weiyue&rft.au=Yu%2C+Ronald&rft.au=Huang%2C+Qiangui&rft.au=Neumann%2C+Ulrich&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2569&rft.epage=2578&rft_id=info:doi/10.1109%2FCVPR.2018.00272&rft.externalDocID=8578370 |