SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation

We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly e...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2569 - 2578
Main Authors Wang, Weiyue, Yu, Ronald, Huang, Qiangui, Neumann, Ulrich
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00272

Cover

Loading…
Abstract We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly extract instance segmentation results. Important to the effectiveness of SGPN is its novel representation of 3D instance segmentation results in the form of a similarity matrix that indicates the similarity between each pair of points in embedded feature space, thus producing an accurate grouping proposal for each point. Experimental results on various 3D scenes show the effectiveness of our method on 3D instance segmentation, and we also evaluate the capability of SGPN to improve 3D object detection and semantic segmentation results. We also demonstrate its flexibility by seamlessly incorporating 2D CNN features into the framework to boost performance.
AbstractList We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly extract instance segmentation results. Important to the effectiveness of SGPN is its novel representation of 3D instance segmentation results in the form of a similarity matrix that indicates the similarity between each pair of points in embedded feature space, thus producing an accurate grouping proposal for each point. Experimental results on various 3D scenes show the effectiveness of our method on 3D instance segmentation, and we also evaluate the capability of SGPN to improve 3D object detection and semantic segmentation results. We also demonstrate its flexibility by seamlessly incorporating 2D CNN features into the framework to boost performance.
Author Huang, Qiangui
Wang, Weiyue
Neumann, Ulrich
Yu, Ronald
Author_xml – sequence: 1
  givenname: Weiyue
  surname: Wang
  fullname: Wang, Weiyue
– sequence: 2
  givenname: Ronald
  surname: Yu
  fullname: Yu, Ronald
– sequence: 3
  givenname: Qiangui
  surname: Huang
  fullname: Huang, Qiangui
– sequence: 4
  givenname: Ulrich
  surname: Neumann
  fullname: Neumann, Ulrich
BookMark eNotzE1LwzAcgPEoCs7Zswcv-QKtSfPuTeqcgzGLVa8jbf-VaJeMNEP27RX09Fx-PJfozAcPCF1TUlBKzG31Xr8UJaG6IKRU5QnKjNJUMC0lL4k5RTNKJMuloeYCZdP0SX6d1ExzMUN1s6w3d7hxOzfa6NIRL2M47HEdwz5MdsQbSN8hfuEhRMwecB2cT7gaw6HHKz8l6zvADXzswCebXPBX6Hyw4wTZf-fo7XHxWj3l6-flqrpf567kNOU9taRlhre0tdxY28tWD4xIrZQB6LqOqR561cFghGRAuOhN2ypumBBKWMvm6Obv6wBgu49uZ-Nxq4XSTBH2A0qOUVw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00272
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 2578
ExternalDocumentID 8578370
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-d1a0b394b1ba49aad6b8f3068779eeccc37ded7cef9563e045d9bb74935575aa3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-d1a0b394b1ba49aad6b8f3068779eeccc37ded7cef9563e045d9bb74935575aa3
PageCount 10
ParticipantIDs ieee_primary_8578370
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5705242
Snippet We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN...
SourceID ieee
SourceType Publisher
StartPage 2569
SubjectTerms Feature extraction
Image segmentation
Proposals
Semantics
Three-dimensional displays
Two dimensional displays
Title SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation
URI https://ieeexplore.ieee.org/document/8578370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6byUcS3PDCSNomdOGYtlILUKqIUdavs2EERbVLRZOHXc3ZCQYiBKYmlyJbP1t07v3tG6EoZAZckcJ0UHg4NtHakkbvjgoY-EzRKraTQeBKOZvRxHsxb6HpbC6O1tuQz3TOv9ixfFUllUmX9CJYXYQDQdwC41bVa23yKH0Ykak7IzDcBZBPyqFHz8VzeH7zET4bLZcmTRhH4x3Uq1psMO2j8NY6aRPLWq0rZSz5-STT-d6B7qPtdt4fjrUfaRy2dH6BOE2jiZhtvDlE8vY8nN3iarTIAthCHY5uCMv-ui41Y4klNDscQ0WJyi-Miy0s8WBaVwg82noSOpvp11RQu5V00G949D0ZOc7WCk4HLLh3lCVcSTqUnBeVCqFBGKaCHiDGuwaoJYUorlugUDEc0xH2KS8moUWNngRDkCLXzItfHCBNPKOpq5Srt0TRNuQwSJvyEhYkPfagTdGgmaLGu1TMWzdyc_t18hnaNiWoy1jlql--VvgC3X8pLa-9PLmWsfw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRwUa7dfWKIigsi4DhRtq1M4uwEdku_vW23URjPHja1mRp09fmfe_1e18BuBZawCVybStWDwu7Ulpcy91Rhr0uYdiPjaTQOPAGM_w4d-c1cLOthZFSGvKZbOtXc5YvsqjQqbKOr5YXIipA31F-33XKaq1tRqXr-civzsj0N1KxjUf9Ss_HsWmn9xI-azaXoU9qTeAfF6oYf9JvgPHXSEoayVu7yHk7-vgl0vjfoe6D1nflHgy3PukA1GR6CBoV1ITVRt40QTh5CINbOElWiQptFRKHJgml_11nG7aEQUkPhwrTQnQHwyxJc9hbZoWAQ4MoVUcT-bqqSpfSFpj176e9gVVdrmAlymnnlnCYzRHF3OEMU8aEx_1YxQ8-IVQqu0aICClIJGNlOiQV8hOUc4K1HjtxGUNHoJ5mqTwGEDlMYFsKW0gHx3FMuRsR1o2IF3VVH-IENPUELdalfsaimpvTv5uvwO5gOh4tRsPg6QzsaXOV1KxzUM_fC3mhQEDOL43tPwFdlK_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=SGPN%3A+Similarity+Group+Proposal+Network+for+3D+Point+Cloud+Instance+Segmentation&rft.au=Wang%2C+Weiyue&rft.au=Yu%2C+Ronald&rft.au=Huang%2C+Qiangui&rft.au=Neumann%2C+Ulrich&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2569&rft.epage=2578&rft_id=info:doi/10.1109%2FCVPR.2018.00272&rft.externalDocID=8578370