A Fast, Scalable, and Reliable Deghosting Method for Extreme Exposure Fusion

HDR fusion of extreme exposure images with complex camera and object motion is a challenging task. Existing patch-based optimization techniques generate noisy and/or blurry results with undesirable artifacts for difficult scenarios. Additionally, they are computationally intensive and have high exec...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Computational Photography pp. 1 - 8
Main Authors Prabhakar, K. Ram, Arora, Rajat, Swaminathan, Adhitya, Singh, Kunal Pratap, Babu, R. Venkatesh
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract HDR fusion of extreme exposure images with complex camera and object motion is a challenging task. Existing patch-based optimization techniques generate noisy and/or blurry results with undesirable artifacts for difficult scenarios. Additionally, they are computationally intensive and have high execution times. Recently proposed CNN-based methods offer fast alternatives, but still fail to generate artifact-free results for extreme exposure images. Furthermore, they do not scale to an arbitrary number of input images. To address these issues, we propose a simple, yet effective CNN-based multi-exposure image fusion method that produces artifact-free HDR images. Our method is fast, and scales to an arbitrary number of input images. Additionally, we prepare a large dataset of 582 varying exposure images with corresponding deghosted HDR images to train our model. We test the efficacy of our algorithm on publicly available datasets, and achieve significant improvements over existing state-of-the-art methods. Through experimental results, we demonstrate that our method produces artifact-free results, and offers a speed-up of around 54× over existing state-of-the-art HDR fusion methods.
AbstractList HDR fusion of extreme exposure images with complex camera and object motion is a challenging task. Existing patch-based optimization techniques generate noisy and/or blurry results with undesirable artifacts for difficult scenarios. Additionally, they are computationally intensive and have high execution times. Recently proposed CNN-based methods offer fast alternatives, but still fail to generate artifact-free results for extreme exposure images. Furthermore, they do not scale to an arbitrary number of input images. To address these issues, we propose a simple, yet effective CNN-based multi-exposure image fusion method that produces artifact-free HDR images. Our method is fast, and scales to an arbitrary number of input images. Additionally, we prepare a large dataset of 582 varying exposure images with corresponding deghosted HDR images to train our model. We test the efficacy of our algorithm on publicly available datasets, and achieve significant improvements over existing state-of-the-art methods. Through experimental results, we demonstrate that our method produces artifact-free results, and offers a speed-up of around 54× over existing state-of-the-art HDR fusion methods.
Author Arora, Rajat
Prabhakar, K. Ram
Babu, R. Venkatesh
Singh, Kunal Pratap
Swaminathan, Adhitya
Author_xml – sequence: 1
  givenname: K. Ram
  surname: Prabhakar
  fullname: Prabhakar, K. Ram
  organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA
– sequence: 2
  givenname: Rajat
  surname: Arora
  fullname: Arora, Rajat
  organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA
– sequence: 3
  givenname: Adhitya
  surname: Swaminathan
  fullname: Swaminathan, Adhitya
  organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA
– sequence: 4
  givenname: Kunal Pratap
  surname: Singh
  fullname: Singh, Kunal Pratap
  organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA
– sequence: 5
  givenname: R. Venkatesh
  surname: Babu
  fullname: Babu, R. Venkatesh
  organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA
BookMark eNotj9FOwjAYhavRRMQ9gV70Adjs39a1vSSTCckMRvGalPUvzIyVrCPRtxcjN-fLuflyzi256kKHhDwAywCYeVwUxdt8uco4A5NpJZXg5oIkRmlQXIPguYBLMuJS8VTlIr8hSYxfjDHI4clwMSLVlJY2DhP6UdvWblqcUNs5-o5t89foM253IQ5Nt6WvOOyCoz70dPY99LjHEw8hHnuk5TE2obsj1962EZMzx-SznK2KeVotXxbFtEobLmFIHQAqA1Jrd1qivXPeMWFQC2vROyO5A2XlRuia13ktpVeyZrkDLU8BVozJ_b-3QcT1oW_2tv9Zn_-LX8FAUCQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCPHOT.2019.8747329
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728132631
1728132630
EISSN 2472-7636
EndPage 8
ExternalDocumentID 8747329
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i241t-d11e791488d0018fddfd039e83aaefd942d17a4b38c2c6c44f74c06d1846d11a3
IEDL.DBID RIE
IngestDate Wed Aug 27 05:54:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-d11e791488d0018fddfd039e83aaefd942d17a4b38c2c6c44f74c06d1846d11a3
PageCount 8
ParticipantIDs ieee_primary_8747329
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE International Conference on Computational Photography
PublicationTitleAbbrev ICCPHOT
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615923
Score 1.8987042
Snippet HDR fusion of extreme exposure images with complex camera and object motion is a challenging task. Existing patch-based optimization techniques generate noisy...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptive optics
Deghosting
Dynamic range
Exposure Fusion
Feature extraction
High Dynamic Range Imaging
Image reconstruction
Optical fiber networks
Optical imaging
Optical saturation
Title A Fast, Scalable, and Reliable Deghosting Method for Extreme Exposure Fusion
URI https://ieeexplore.ieee.org/document/8747329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0-oYHxnDx4ptN3t62iQBo0oB0i4kX1hjKYQaRPjr3emrRiNBy99bNJHdtp-M9PvmwG4ShBmdOxKxyB6UFFt60huYgcNLgNrrLRlUZ_JQziei7tFsGhAb6eFsdaW5DPbp83yX75Z64JSZYMYfV_uJ01oYuBWabW-8ykIzeis1Oo4z00Gt8PhdPw4I_oWPg_VoT96qJQQkrZh8nXxijny0i9y1dcfv-oy_vfu9qH7LdZj0x0MHUDDZofQrr1LVr-72w7cX7NUbvMeDslXEkz1mMwMI04y7bEb-0SKDzwHm5RtpRn6s2z0nlMGEdebNSUTWVpQfq0L83Q0G46dupeC84wYnTvG82yUYOwTG-rDtzJmZVye2JhLaVcmEb7xIikUj7WvQy3EKhLaDQ0GgLjwJD-CVrbO7DEwX0jtcqWEr_AzG3JFNeWjwDcmcBUGSCfQoclZbqpyGct6Xk7_Hj6DPTJQxSE8h1b-VtgLxPlcXZYG_gQe56bd
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BIse32eTRIU5QiB0i4kX3VGE0h0ibGX-9sWyEaD1762KSP7LT9ZqbfNwNwEyLMiMBkhkT00EW1lcGoDAw0OHOVVEyVRX2SsRfPnIe5O29Ad6OFUUqV5DPV05vlv3y5FIVOld0G6PtSO9yBXcR916rUWtuMCoIzuiu1Ps4yw9thvz-Jn6aawIVPRHXwjy4qJYhELUi-L19xR157Rc574vNXZcb_3t8BdLZyPTLZANEhNFR2BK3avyT127tuw-iORGydd3GIvWnJVJewTBLNStZ75F49a80HnoMkZWNpgh4tGXzkOoeI69VSpxNJVOgMWwdm0WDaj426m4LxgiidG9KylB9i9BNI3YkvlTKVJg1VQBlTqQwdW1o-czgNhC084Tip7wjTkxgC4sJi9Bia2TJTJ0BshwmTcu7YHD-0HuW6qrzv2lK6JscQ6RTaenIWq6pgxqKel7O_h69hL54mo8VoOH48h31trIpReAHN_L1Ql4j6Ob8qjf0FBXOqJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computational+Photography&rft.atitle=A+Fast%2C+Scalable%2C+and+Reliable+Deghosting+Method+for+Extreme+Exposure+Fusion&rft.au=Prabhakar%2C+K.+Ram&rft.au=Arora%2C+Rajat&rft.au=Swaminathan%2C+Adhitya&rft.au=Singh%2C+Kunal+Pratap&rft.date=2019-05-01&rft.pub=IEEE&rft.eissn=2472-7636&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICCPHOT.2019.8747329&rft.externalDocID=8747329