A Fast, Scalable, and Reliable Deghosting Method for Extreme Exposure Fusion
HDR fusion of extreme exposure images with complex camera and object motion is a challenging task. Existing patch-based optimization techniques generate noisy and/or blurry results with undesirable artifacts for difficult scenarios. Additionally, they are computationally intensive and have high exec...
Saved in:
Published in | IEEE International Conference on Computational Photography pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | HDR fusion of extreme exposure images with complex camera and object motion is a challenging task. Existing patch-based optimization techniques generate noisy and/or blurry results with undesirable artifacts for difficult scenarios. Additionally, they are computationally intensive and have high execution times. Recently proposed CNN-based methods offer fast alternatives, but still fail to generate artifact-free results for extreme exposure images. Furthermore, they do not scale to an arbitrary number of input images. To address these issues, we propose a simple, yet effective CNN-based multi-exposure image fusion method that produces artifact-free HDR images. Our method is fast, and scales to an arbitrary number of input images. Additionally, we prepare a large dataset of 582 varying exposure images with corresponding deghosted HDR images to train our model. We test the efficacy of our algorithm on publicly available datasets, and achieve significant improvements over existing state-of-the-art methods. Through experimental results, we demonstrate that our method produces artifact-free results, and offers a speed-up of around 54× over existing state-of-the-art HDR fusion methods. |
---|---|
AbstractList | HDR fusion of extreme exposure images with complex camera and object motion is a challenging task. Existing patch-based optimization techniques generate noisy and/or blurry results with undesirable artifacts for difficult scenarios. Additionally, they are computationally intensive and have high execution times. Recently proposed CNN-based methods offer fast alternatives, but still fail to generate artifact-free results for extreme exposure images. Furthermore, they do not scale to an arbitrary number of input images. To address these issues, we propose a simple, yet effective CNN-based multi-exposure image fusion method that produces artifact-free HDR images. Our method is fast, and scales to an arbitrary number of input images. Additionally, we prepare a large dataset of 582 varying exposure images with corresponding deghosted HDR images to train our model. We test the efficacy of our algorithm on publicly available datasets, and achieve significant improvements over existing state-of-the-art methods. Through experimental results, we demonstrate that our method produces artifact-free results, and offers a speed-up of around 54× over existing state-of-the-art HDR fusion methods. |
Author | Arora, Rajat Prabhakar, K. Ram Babu, R. Venkatesh Singh, Kunal Pratap Swaminathan, Adhitya |
Author_xml | – sequence: 1 givenname: K. Ram surname: Prabhakar fullname: Prabhakar, K. Ram organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA – sequence: 2 givenname: Rajat surname: Arora fullname: Arora, Rajat organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA – sequence: 3 givenname: Adhitya surname: Swaminathan fullname: Swaminathan, Adhitya organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA – sequence: 4 givenname: Kunal Pratap surname: Singh fullname: Singh, Kunal Pratap organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA – sequence: 5 givenname: R. Venkatesh surname: Babu fullname: Babu, R. Venkatesh organization: Video Analytics Lab, Indian Institute of Science, Bengaluru, Karnataka, 560012, INDIA |
BookMark | eNotj9FOwjAYhavRRMQ9gV70Adjs39a1vSSTCckMRvGalPUvzIyVrCPRtxcjN-fLuflyzi256kKHhDwAywCYeVwUxdt8uco4A5NpJZXg5oIkRmlQXIPguYBLMuJS8VTlIr8hSYxfjDHI4clwMSLVlJY2DhP6UdvWblqcUNs5-o5t89foM253IQ5Nt6WvOOyCoz70dPY99LjHEw8hHnuk5TE2obsj1962EZMzx-SznK2KeVotXxbFtEobLmFIHQAqA1Jrd1qivXPeMWFQC2vROyO5A2XlRuia13ktpVeyZrkDLU8BVozJ_b-3QcT1oW_2tv9Zn_-LX8FAUCQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCPHOT.2019.8747329 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781728132631 1728132630 |
EISSN | 2472-7636 |
EndPage | 8 |
ExternalDocumentID | 8747329 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i241t-d11e791488d0018fddfd039e83aaefd942d17a4b38c2c6c44f74c06d1846d11a3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 05:54:12 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-d11e791488d0018fddfd039e83aaefd942d17a4b38c2c6c44f74c06d1846d11a3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8747329 |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE International Conference on Computational Photography |
PublicationTitleAbbrev | ICCPHOT |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001615923 |
Score | 1.8987042 |
Snippet | HDR fusion of extreme exposure images with complex camera and object motion is a challenging task. Existing patch-based optimization techniques generate noisy... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Adaptive optics Deghosting Dynamic range Exposure Fusion Feature extraction High Dynamic Range Imaging Image reconstruction Optical fiber networks Optical imaging Optical saturation |
Title | A Fast, Scalable, and Reliable Deghosting Method for Extreme Exposure Fusion |
URI | https://ieeexplore.ieee.org/document/8747329 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0-oYHxnDx4ptN3t62iQBo0oB0i4kX1hjKYQaRPjr3emrRiNBy99bNJHdtp-M9PvmwG4ShBmdOxKxyB6UFFt60huYgcNLgNrrLRlUZ_JQziei7tFsGhAb6eFsdaW5DPbp83yX75Z64JSZYMYfV_uJ01oYuBWabW-8ykIzeis1Oo4z00Gt8PhdPw4I_oWPg_VoT96qJQQkrZh8nXxijny0i9y1dcfv-oy_vfu9qH7LdZj0x0MHUDDZofQrr1LVr-72w7cX7NUbvMeDslXEkz1mMwMI04y7bEb-0SKDzwHm5RtpRn6s2z0nlMGEdebNSUTWVpQfq0L83Q0G46dupeC84wYnTvG82yUYOwTG-rDtzJmZVye2JhLaVcmEb7xIikUj7WvQy3EKhLaDQ0GgLjwJD-CVrbO7DEwX0jtcqWEr_AzG3JFNeWjwDcmcBUGSCfQoclZbqpyGct6Xk7_Hj6DPTJQxSE8h1b-VtgLxPlcXZYG_gQe56bd |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BIse32eTRIU5QiB0i4kX3VGE0h0ibGX-9sWyEaD1762KSP7LT9ZqbfNwNwEyLMiMBkhkT00EW1lcGoDAw0OHOVVEyVRX2SsRfPnIe5O29Ad6OFUUqV5DPV05vlv3y5FIVOld0G6PtSO9yBXcR916rUWtuMCoIzuiu1Ps4yw9thvz-Jn6aawIVPRHXwjy4qJYhELUi-L19xR157Rc574vNXZcb_3t8BdLZyPTLZANEhNFR2BK3avyT127tuw-iORGydd3GIvWnJVJewTBLNStZ75F49a80HnoMkZWNpgh4tGXzkOoeI69VSpxNJVOgMWwdm0WDaj426m4LxgiidG9KylB9i9BNI3YkvlTKVJg1VQBlTqQwdW1o-czgNhC084Tip7wjTkxgC4sJi9Bia2TJTJ0BshwmTcu7YHD-0HuW6qrzv2lK6JscQ6RTaenIWq6pgxqKel7O_h69hL54mo8VoOH48h31trIpReAHN_L1Ql4j6Ob8qjf0FBXOqJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computational+Photography&rft.atitle=A+Fast%2C+Scalable%2C+and+Reliable+Deghosting+Method+for+Extreme+Exposure+Fusion&rft.au=Prabhakar%2C+K.+Ram&rft.au=Arora%2C+Rajat&rft.au=Swaminathan%2C+Adhitya&rft.au=Singh%2C+Kunal+Pratap&rft.date=2019-05-01&rft.pub=IEEE&rft.eissn=2472-7636&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICCPHOT.2019.8747329&rft.externalDocID=8747329 |