Encoding and Decoding of Music-Genre Representations in the Human Brain
Music-genre recognition (MGR) has been a central issue in understanding human preferences of music. Previous studies have used various acoustic features to achieve MGR, though it has been largely unknown how music genres and related features are represented in the brain. Here, we measured brain acti...
Saved in:
Published in | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics pp. 584 - 589 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2577-1655 |
DOI | 10.1109/SMC.2018.00108 |
Cover
Loading…
Abstract | Music-genre recognition (MGR) has been a central issue in understanding human preferences of music. Previous studies have used various acoustic features to achieve MGR, though it has been largely unknown how music genres and related features are represented in the brain. Here, we measured brain activity while subjects passively listened to naturalistic music of various genres. A voxel-wise encoding model showed different activation patterns for each music genre in the bilateral superior temporal gyrus. We further performed music-genre classification using both a feature-based approach and a brain activity-based approach. Both approaches provided above-chance classification accuracy. Among four feature models, a biologically plausible spectro-temporal modulation transfer function (MTF) model showed the highest performance. These results provide a new insight into biologically plausible models of music genre. |
---|---|
AbstractList | Music-genre recognition (MGR) has been a central issue in understanding human preferences of music. Previous studies have used various acoustic features to achieve MGR, though it has been largely unknown how music genres and related features are represented in the brain. Here, we measured brain activity while subjects passively listened to naturalistic music of various genres. A voxel-wise encoding model showed different activation patterns for each music genre in the bilateral superior temporal gyrus. We further performed music-genre classification using both a feature-based approach and a brain activity-based approach. Both approaches provided above-chance classification accuracy. Among four feature models, a biologically plausible spectro-temporal modulation transfer function (MTF) model showed the highest performance. These results provide a new insight into biologically plausible models of music genre. |
Author | Nakai, Tomoya Nishimoto, Shinji Koide-Majima, Naoko |
Author_xml | – sequence: 1 givenname: Tomoya surname: Nakai fullname: Nakai, Tomoya – sequence: 2 givenname: Naoko surname: Koide-Majima fullname: Koide-Majima, Naoko – sequence: 3 givenname: Shinji surname: Nishimoto fullname: Nishimoto, Shinji |
BookMark | eNotzLtOw0AQQNEFgUQSaGlo9gdsZvbtEkxIkBIh8aijyXoMi8g6sp2Cv09BqqvT3Km4yF1mIW4RSkSo7t_XdakAQwmAEM7EFK0OzjkL6lxMlPW-QGftlZgOww-AAoNhIhbzHLsm5S9JuZFPfELXyvVhSLFYcO5ZvvG-54HzSGPq8iBTluM3y-VhR1k-9pTytbhs6Xfgm1Nn4vN5_lEvi9Xr4qV-WBVJGRyLSEo3ugoxBs9AbgsUSPOWPCEqb4yLWGlvKmDd2mAJmVWMntvGVA0qPRN3_9_EzJt9n3bU_22CQ4dg9BE8Pkvv |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/SMC.2018.00108 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISBN | 1538666502 9781538666500 |
EISSN | 2577-1655 |
EndPage | 589 |
ExternalDocumentID | 8616104 |
Genre | orig-research |
GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i241t-ca23d398cc87e0a6b0a8a3eba7a1127446c1937490e3f585a1ee2cc7efd49d123 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:54:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-ca23d398cc87e0a6b0a8a3eba7a1127446c1937490e3f585a1ee2cc7efd49d123 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8616104 |
PublicationCentury | 2000 |
PublicationDate | 2018-10 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10 |
PublicationDecade | 2010 |
PublicationTitle | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics |
PublicationTitleAbbrev | SMC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020418 |
Score | 2.1016822 |
Snippet | Music-genre recognition (MGR) has been a central issue in understanding human preferences of music. Previous studies have used various acoustic features to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 584 |
SubjectTerms | decoding MRI MTF music genre |
Title | Encoding and Decoding of Music-Genre Representations in the Human Brain |
URI | https://ieeexplore.ieee.org/document/8616104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rRPsQ3e_CgYNqk2W6Sq7UPhIqohd7KPiZQhE2x6cVf72wSaxEP3jaBJWE3u_PN5vu-AbimXVFxR9WJYmU8norQS1xLyL4WiTaYKidwnj6JyYw_zvvzGtxttTCIWJDPsOOaxb98k-mNOyrrxoLwiTP_3KPErdRqbZMrnwdxZcoY-En3dTpwvC1HlAxc6cid0ilF5BgdwvT7mSVh5L2zyVVHf_6yY_zvSx1B-0ejx5630acBNbRNONixF2xCo1q4a3ZTuUvftmA8tDpzXZi0hj1gdZGlrCj57I3dB8VeCoJspUuya7a0jJAiK4782b0rK9GG2Wj4Nph4VTUFb0lROve07IUmTGKt4wh9KZQvYxmikpEkzBVRWqgJzEU88TFMKYmQAWJP6whTwxNDAe4Y6jazeAIsVH2kzlz6RnMkyEGwo6cUj0SQSsJkp9By47RYlYYZi2qIzv6-fQ77bqZKhtwF1POPDV5SpM_VVTHFX3xZqPo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6KHtSL9iG-3YMHBdMmzTaPq7UPtSmiLfRW9jGBIiRi04u_3tkk1iIevG0CS8Judr9vNt98A3BFu6LkRqrjB1JbPPZcKzQtT3SUFyqNsTQJztHYG07546wzq8DtOhcGEXPxGTZNM_-Xr1O1MkdlrcAjfmLMP7cJ93lYZGutwyubO0Fpy-jYYes16hrllpFKOqZ45EbxlBw7-vsQfT-1kIy8NVeZbKrPX4aM_32tA2j8ZOmx5zX-VKGCSQ32NgwGa1Atl-6SXZf-0jd1GPQSlZouTCSa3WN5kcYsL_psDcwnxV5yiWyZmZQs2SJhxBVZfujP7kxhiQZM-71Jd2iV9RSsBeF0ZinRdrUbBkoFPtrCk7YIhItS-IJYl0-BoSI65_PQRjemMEI4iG2lfIw1DzVB3CFsJWmCR8Bc2UHqzIWtFUciHUQ82lJy33NiQazsGOpmnObvhWXGvByik79vX8LOcBKN5qOH8dMp7JpZK_RyZ7CVfazwnHA_kxf5dH8Bi66sSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Encoding+and+Decoding+of+Music-Genre+Representations+in+the+Human+Brain&rft.au=Nakai%2C+Tomoya&rft.au=Koide-Majima%2C+Naoko&rft.au=Nishimoto%2C+Shinji&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=584&rft.epage=589&rft_id=info:doi/10.1109%2FSMC.2018.00108&rft.externalDocID=8616104 |