Encoding and Decoding of Music-Genre Representations in the Human Brain

Music-genre recognition (MGR) has been a central issue in understanding human preferences of music. Previous studies have used various acoustic features to achieve MGR, though it has been largely unknown how music genres and related features are represented in the brain. Here, we measured brain acti...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings - IEEE International Conference on Systems, Man, and Cybernetics pp. 584 - 589
Main Authors Nakai, Tomoya, Koide-Majima, Naoko, Nishimoto, Shinji
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2018
Subjects
Online AccessGet full text
ISSN2577-1655
DOI10.1109/SMC.2018.00108

Cover

Loading…
Abstract Music-genre recognition (MGR) has been a central issue in understanding human preferences of music. Previous studies have used various acoustic features to achieve MGR, though it has been largely unknown how music genres and related features are represented in the brain. Here, we measured brain activity while subjects passively listened to naturalistic music of various genres. A voxel-wise encoding model showed different activation patterns for each music genre in the bilateral superior temporal gyrus. We further performed music-genre classification using both a feature-based approach and a brain activity-based approach. Both approaches provided above-chance classification accuracy. Among four feature models, a biologically plausible spectro-temporal modulation transfer function (MTF) model showed the highest performance. These results provide a new insight into biologically plausible models of music genre.
AbstractList Music-genre recognition (MGR) has been a central issue in understanding human preferences of music. Previous studies have used various acoustic features to achieve MGR, though it has been largely unknown how music genres and related features are represented in the brain. Here, we measured brain activity while subjects passively listened to naturalistic music of various genres. A voxel-wise encoding model showed different activation patterns for each music genre in the bilateral superior temporal gyrus. We further performed music-genre classification using both a feature-based approach and a brain activity-based approach. Both approaches provided above-chance classification accuracy. Among four feature models, a biologically plausible spectro-temporal modulation transfer function (MTF) model showed the highest performance. These results provide a new insight into biologically plausible models of music genre.
Author Nakai, Tomoya
Nishimoto, Shinji
Koide-Majima, Naoko
Author_xml – sequence: 1
  givenname: Tomoya
  surname: Nakai
  fullname: Nakai, Tomoya
– sequence: 2
  givenname: Naoko
  surname: Koide-Majima
  fullname: Koide-Majima, Naoko
– sequence: 3
  givenname: Shinji
  surname: Nishimoto
  fullname: Nishimoto, Shinji
BookMark eNotzLtOw0AQQNEFgUQSaGlo9gdsZvbtEkxIkBIh8aijyXoMi8g6sp2Cv09BqqvT3Km4yF1mIW4RSkSo7t_XdakAQwmAEM7EFK0OzjkL6lxMlPW-QGftlZgOww-AAoNhIhbzHLsm5S9JuZFPfELXyvVhSLFYcO5ZvvG-54HzSGPq8iBTluM3y-VhR1k-9pTytbhs6Xfgm1Nn4vN5_lEvi9Xr4qV-WBVJGRyLSEo3ugoxBs9AbgsUSPOWPCEqb4yLWGlvKmDd2mAJmVWMntvGVA0qPRN3_9_EzJt9n3bU_22CQ4dg9BE8Pkvv
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC.2018.00108
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 1538666502
9781538666500
EISSN 2577-1655
EndPage 589
ExternalDocumentID 8616104
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-ca23d398cc87e0a6b0a8a3eba7a1127446c1937490e3f585a1ee2cc7efd49d123
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-ca23d398cc87e0a6b0a8a3eba7a1127446c1937490e3f585a1ee2cc7efd49d123
PageCount 6
ParticipantIDs ieee_primary_8616104
PublicationCentury 2000
PublicationDate 2018-10
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10
PublicationDecade 2010
PublicationTitle Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev SMC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
Score 2.1016822
Snippet Music-genre recognition (MGR) has been a central issue in understanding human preferences of music. Previous studies have used various acoustic features to...
SourceID ieee
SourceType Publisher
StartPage 584
SubjectTerms decoding
MRI
MTF
music genre
Title Encoding and Decoding of Music-Genre Representations in the Human Brain
URI https://ieeexplore.ieee.org/document/8616104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rRPsQ3e_CgYNqk2W6Sq7UPhIqohd7KPiZQhE2x6cVf72wSaxEP3jaBJWE3u_PN5vu-AbimXVFxR9WJYmU8norQS1xLyL4WiTaYKidwnj6JyYw_zvvzGtxttTCIWJDPsOOaxb98k-mNOyrrxoLwiTP_3KPErdRqbZMrnwdxZcoY-En3dTpwvC1HlAxc6cid0ilF5BgdwvT7mSVh5L2zyVVHf_6yY_zvSx1B-0ejx5630acBNbRNONixF2xCo1q4a3ZTuUvftmA8tDpzXZi0hj1gdZGlrCj57I3dB8VeCoJspUuya7a0jJAiK4782b0rK9GG2Wj4Nph4VTUFb0lROve07IUmTGKt4wh9KZQvYxmikpEkzBVRWqgJzEU88TFMKYmQAWJP6whTwxNDAe4Y6jazeAIsVH2kzlz6RnMkyEGwo6cUj0SQSsJkp9By47RYlYYZi2qIzv6-fQ77bqZKhtwF1POPDV5SpM_VVTHFX3xZqPo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6KHtSL9iG-3YMHBdMmzTaPq7UPtSmiLfRW9jGBIiRi04u_3tkk1iIevG0CS8Judr9vNt98A3BFu6LkRqrjB1JbPPZcKzQtT3SUFyqNsTQJztHYG07546wzq8DtOhcGEXPxGTZNM_-Xr1O1MkdlrcAjfmLMP7cJ93lYZGutwyubO0Fpy-jYYes16hrllpFKOqZ45EbxlBw7-vsQfT-1kIy8NVeZbKrPX4aM_32tA2j8ZOmx5zX-VKGCSQ32NgwGa1Atl-6SXZf-0jd1GPQSlZouTCSa3WN5kcYsL_psDcwnxV5yiWyZmZQs2SJhxBVZfujP7kxhiQZM-71Jd2iV9RSsBeF0ZinRdrUbBkoFPtrCk7YIhItS-IJYl0-BoSI65_PQRjemMEI4iG2lfIw1DzVB3CFsJWmCR8Bc2UHqzIWtFUciHUQ82lJy33NiQazsGOpmnObvhWXGvByik79vX8LOcBKN5qOH8dMp7JpZK_RyZ7CVfazwnHA_kxf5dH8Bi66sSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Encoding+and+Decoding+of+Music-Genre+Representations+in+the+Human+Brain&rft.au=Nakai%2C+Tomoya&rft.au=Koide-Majima%2C+Naoko&rft.au=Nishimoto%2C+Shinji&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=584&rft.epage=589&rft_id=info:doi/10.1109%2FSMC.2018.00108&rft.externalDocID=8616104