Quantitative evaluation of a novel image segmentation algorithm

We present a quantitative evaluation of SE-MinCut, a novel segmentation algorithm based on spectral embedding and minimum cut. We use human segmentations from the Berkeley segmentation database as ground truth and propose suitable measures to evaluate segmentation quality. With these measures we gen...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 1132 - 1139 vol. 2
Main Authors Estrada, F.J., Jepson, A.D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.284

Cover

Loading…
Abstract We present a quantitative evaluation of SE-MinCut, a novel segmentation algorithm based on spectral embedding and minimum cut. We use human segmentations from the Berkeley segmentation database as ground truth and propose suitable measures to evaluate segmentation quality. With these measures we generate precision/recall curves for SE-MinCut and three of the leading segmentation algorithms: mean-shift, normalized Cuts, and the local variation algorithm. These curves characterize the performance of each algorithm over a range of input parameters. We compare the precision/recall curves for the four algorithms and show segmented images that support the conclusions obtained from the quantitative evaluation.
AbstractList We present a quantitative evaluation of SE-MinCut, a novel segmentation algorithm based on spectral embedding and minimum cut. We use human segmentations from the Berkeley segmentation database as ground truth and propose suitable measures to evaluate segmentation quality. With these measures we generate precision/recall curves for SE-MinCut and three of the leading segmentation algorithms: mean-shift, normalized Cuts, and the local variation algorithm. These curves characterize the performance of each algorithm over a range of input parameters. We compare the precision/recall curves for the four algorithms and show segmented images that support the conclusions obtained from the quantitative evaluation.
Author Jepson, A.D.
Estrada, F.J.
Author_xml – sequence: 1
  givenname: F.J.
  surname: Estrada
  fullname: Estrada, F.J.
  organization: Dept. of Comput. Sci., Toronto Univ., Ont., Canada
– sequence: 2
  givenname: A.D.
  surname: Jepson
  fullname: Jepson, A.D.
  organization: Dept. of Comput. Sci., Toronto Univ., Ont., Canada
BookMark eNpNjktLw0AUhQetYFu7dOVm_kDinUcmMyuRYFUo-KC4LTczNzGShyRpwH9voC48Z3EOfHA4K7Zou5YYuxYQCwHuNvt4fY8lQBJLq8_YUoBRkXHCnbMVpMYlUqVSLv6BS7YZhi-YpZyyWi7Z3dsR27Eacawm4jRhfZxr1_Ku4MjbbqKaVw2WxAcqG2rHE8W67Ppq_Gyu2EWB9UCbv1yz_fZhnz1Fu5fH5-x-F1VSizHyTnsfCjXbG7KIqA2IXKchBDA2NcY69EEGzElCSIoAzhKaPJE-MUGt2c1ptiKiw3c_X-p_DkKbNElB_QIW902j
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.284
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 1139 vol. 2
ExternalDocumentID 1467570
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-c94ccdf3f3fc6e8aaa4601b47ddd06876689acd2dabe20d5fd098ea6b52c56d3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-c94ccdf3f3fc6e8aaa4601b47ddd06876689acd2dabe20d5fd098ea6b52c56d3
ParticipantIDs ieee_primary_1467570
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.8344868
Snippet We present a quantitative evaluation of SE-MinCut, a novel segmentation algorithm based on spectral embedding and minimum cut. We use human segmentations from...
SourceID ieee
SourceType Publisher
StartPage 1132
SubjectTerms Computer science
Continuous improvement
Humans
Image databases
Image segmentation
Partitioning algorithms
Pixel
Robustness
Time measurement
Title Quantitative evaluation of a novel image segmentation algorithm
URI https://ieeexplore.ieee.org/document/1467570
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4ykTZPYiSeGiqpCKiqooG6VXykVbYLahIFfz9l5SYgBZYmdRLKt-Hzf2d93CN2GodY6jkOHuEo7QayHDlex6wgSgzPCuSe44TtPn-jkNXhckEUL3dVcGPjUHj7TfXNr9_JVKnMTKhuYWU1CAOgHANwKrlYdTzEc06iEeabsA7KhrN5R8Ew2FrvzSX2HsiErIDwj5oFXKvFUZdaIcQ5Gb7OXIvTiWQXUJgWLXYHGHTSt2l4cPPno55noy-9fso7_7dwR6jVcPzyrV7Fj1NLJCeqUzikup_4eqqr8D1VdF90_5zyxJDUwmbjRDcdpjDlO0i-9westGCy816ttSXJKMN-s0t06e9_20Hz8MB9NnDIhg7OGhT5zJAukVLEPl6Q64pwHgOdEECqlXAp2lUaMS-UpLrTnKhIrl0WaU0E8SajyT1E7SRN9hjDXIQAxY04A_wUyEiF0n0nCObwLTuc56poRWn4WkhvLcnAu_q6-RIdWUdVGRq5QO9vl-hp8hUzc2J_kBzjLt2c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvTkBxi_7cGjgzHWbj15IBJUIGjQcCNd2yERNgObB_96X7uvxHgwu2zdlqzN-t77vfb3ewjdeJ5SKgw9i9hSWW6oOhaXoW0FJIRghHMn4JrvPBrTwav7OCOzGrotuTDwqtl8plr61Kzly1ikOlXW1rOaeADQd8Dvk07G1iozKppl6udAT193AdtQVq4pOLoei1n7pF2Lsg7LQDwj-oaTa_EU16yS42z33iYvWfLFMRqoVREW44P6-2hUfH229eSjlSZBS3z_Enb8b_cOULNi--FJ6ccOUU1FR2g_D09xPvm30FRUgCjaGujuOeWRoamB0cSVcjiOQ8xxFH-pFV6uwWThrVqsc5pThPlqEW-Wyfu6iab9-2lvYOUlGawluPrEEswVQoZdOARVPufcBUQXuJ6U0qZgWanPuJCO5IFybElCaTNfcRoQRxAqu8eoHsWROkGYKw-gmDYogABd4QcedJ8Jwjk8C2HnKWroEZp_ZqIb83xwzv5uvka7g-loOB8-jJ_O0Z7RVzV5kgtUTzapuoTIIQmuzA_zAwIiurA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Quantitative+evaluation+of+a+novel+image+segmentation+algorithm&rft.au=Estrada%2C+F.J.&rft.au=Jepson%2C+A.D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=1132&rft.epage=1139+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.284&rft.externalDocID=1467570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon