Quantitative evaluation of a novel image segmentation algorithm
We present a quantitative evaluation of SE-MinCut, a novel segmentation algorithm based on spectral embedding and minimum cut. We use human segmentations from the Berkeley segmentation database as ground truth and propose suitable measures to evaluate segmentation quality. With these measures we gen...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 1132 - 1139 vol. 2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.284 |
Cover
Loading…
Abstract | We present a quantitative evaluation of SE-MinCut, a novel segmentation algorithm based on spectral embedding and minimum cut. We use human segmentations from the Berkeley segmentation database as ground truth and propose suitable measures to evaluate segmentation quality. With these measures we generate precision/recall curves for SE-MinCut and three of the leading segmentation algorithms: mean-shift, normalized Cuts, and the local variation algorithm. These curves characterize the performance of each algorithm over a range of input parameters. We compare the precision/recall curves for the four algorithms and show segmented images that support the conclusions obtained from the quantitative evaluation. |
---|---|
AbstractList | We present a quantitative evaluation of SE-MinCut, a novel segmentation algorithm based on spectral embedding and minimum cut. We use human segmentations from the Berkeley segmentation database as ground truth and propose suitable measures to evaluate segmentation quality. With these measures we generate precision/recall curves for SE-MinCut and three of the leading segmentation algorithms: mean-shift, normalized Cuts, and the local variation algorithm. These curves characterize the performance of each algorithm over a range of input parameters. We compare the precision/recall curves for the four algorithms and show segmented images that support the conclusions obtained from the quantitative evaluation. |
Author | Jepson, A.D. Estrada, F.J. |
Author_xml | – sequence: 1 givenname: F.J. surname: Estrada fullname: Estrada, F.J. organization: Dept. of Comput. Sci., Toronto Univ., Ont., Canada – sequence: 2 givenname: A.D. surname: Jepson fullname: Jepson, A.D. organization: Dept. of Comput. Sci., Toronto Univ., Ont., Canada |
BookMark | eNpNjktLw0AUhQetYFu7dOVm_kDinUcmMyuRYFUo-KC4LTczNzGShyRpwH9voC48Z3EOfHA4K7Zou5YYuxYQCwHuNvt4fY8lQBJLq8_YUoBRkXHCnbMVpMYlUqVSLv6BS7YZhi-YpZyyWi7Z3dsR27Eacawm4jRhfZxr1_Ku4MjbbqKaVw2WxAcqG2rHE8W67Ppq_Gyu2EWB9UCbv1yz_fZhnz1Fu5fH5-x-F1VSizHyTnsfCjXbG7KIqA2IXKchBDA2NcY69EEGzElCSIoAzhKaPJE-MUGt2c1ptiKiw3c_X-p_DkKbNElB_QIW902j |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.284 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 1139 vol. 2 |
ExternalDocumentID | 1467570 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-c94ccdf3f3fc6e8aaa4601b47ddd06876689acd2dabe20d5fd098ea6b52c56d3 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-c94ccdf3f3fc6e8aaa4601b47ddd06876689acd2dabe20d5fd098ea6b52c56d3 |
ParticipantIDs | ieee_primary_1467570 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.8344868 |
Snippet | We present a quantitative evaluation of SE-MinCut, a novel segmentation algorithm based on spectral embedding and minimum cut. We use human segmentations from... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1132 |
SubjectTerms | Computer science Continuous improvement Humans Image databases Image segmentation Partitioning algorithms Pixel Robustness Time measurement |
Title | Quantitative evaluation of a novel image segmentation algorithm |
URI | https://ieeexplore.ieee.org/document/1467570 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4ykTZPYiSeGiqpCKiqooG6VXykVbYLahIFfz9l5SYgBZYmdRLKt-Hzf2d93CN2GodY6jkOHuEo7QayHDlex6wgSgzPCuSe44TtPn-jkNXhckEUL3dVcGPjUHj7TfXNr9_JVKnMTKhuYWU1CAOgHANwKrlYdTzEc06iEeabsA7KhrN5R8Ew2FrvzSX2HsiErIDwj5oFXKvFUZdaIcQ5Gb7OXIvTiWQXUJgWLXYHGHTSt2l4cPPno55noy-9fso7_7dwR6jVcPzyrV7Fj1NLJCeqUzikup_4eqqr8D1VdF90_5zyxJDUwmbjRDcdpjDlO0i-9westGCy816ttSXJKMN-s0t06e9_20Hz8MB9NnDIhg7OGhT5zJAukVLEPl6Q64pwHgOdEECqlXAp2lUaMS-UpLrTnKhIrl0WaU0E8SajyT1E7SRN9hjDXIQAxY04A_wUyEiF0n0nCObwLTuc56poRWn4WkhvLcnAu_q6-RIdWUdVGRq5QO9vl-hp8hUzc2J_kBzjLt2c |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvTkBxi_7cGjgzHWbj15IBJUIGjQcCNd2yERNgObB_96X7uvxHgwu2zdlqzN-t77vfb3ewjdeJ5SKgw9i9hSWW6oOhaXoW0FJIRghHMn4JrvPBrTwav7OCOzGrotuTDwqtl8plr61Kzly1ikOlXW1rOaeADQd8Dvk07G1iozKppl6udAT193AdtQVq4pOLoei1n7pF2Lsg7LQDwj-oaTa_EU16yS42z33iYvWfLFMRqoVREW44P6-2hUfH229eSjlSZBS3z_Enb8b_cOULNi--FJ6ccOUU1FR2g_D09xPvm30FRUgCjaGujuOeWRoamB0cSVcjiOQ8xxFH-pFV6uwWThrVqsc5pThPlqEW-Wyfu6iab9-2lvYOUlGawluPrEEswVQoZdOARVPufcBUQXuJ6U0qZgWanPuJCO5IFybElCaTNfcRoQRxAqu8eoHsWROkGYKw-gmDYogABd4QcedJ8Jwjk8C2HnKWroEZp_ZqIb83xwzv5uvka7g-loOB8-jJ_O0Z7RVzV5kgtUTzapuoTIIQmuzA_zAwIiurA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Quantitative+evaluation+of+a+novel+image+segmentation+algorithm&rft.au=Estrada%2C+F.J.&rft.au=Jepson%2C+A.D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=1132&rft.epage=1139+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.284&rft.externalDocID=1467570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |