Spatial selection for attentional visual tracking
Long-duration tracking of general targets is quite challenging for computer vision, because in practice target may undergo large uncertainties in its visual appearance and the unconstrained environments may be cluttered and distractive, although tracking has never been a challenge to the human visua...
Saved in:
Published in | 2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2007.383178 |
Cover
Abstract | Long-duration tracking of general targets is quite challenging for computer vision, because in practice target may undergo large uncertainties in its visual appearance and the unconstrained environments may be cluttered and distractive, although tracking has never been a challenge to the human visual system. Psychological and cognitive findings indicate that the human perception is attentional and selective, and both early attentional selection that may be innate and late attentional selection that may be learned are necessary for human visual tracking. This paper proposes a new visual tracking approach by reflecting some aspects of spatial selective attention, and presents a novel attentional visual tracking (AVT) algorithm. In AVT, the early selection process extracts a pool of attentional regions (ARs) that are defined as the salient image regions which have good localization properties, and the late selection process dynamically identifies a subset of discriminative attentional regions (D-ARs) through a discriminative learning on the historical data on the fly. The computationally demanding process of matching of the AR pool is done in an efficient and innovative way by using the idea in the locality-sensitive hashing (LSH) technique. The proposed AVT algorithm is general, robust and computationally efficient, as shown in extensive experiments on a large variety of real-world video. |
---|---|
AbstractList | Long-duration tracking of general targets is quite challenging for computer vision, because in practice target may undergo large uncertainties in its visual appearance and the unconstrained environments may be cluttered and distractive, although tracking has never been a challenge to the human visual system. Psychological and cognitive findings indicate that the human perception is attentional and selective, and both early attentional selection that may be innate and late attentional selection that may be learned are necessary for human visual tracking. This paper proposes a new visual tracking approach by reflecting some aspects of spatial selective attention, and presents a novel attentional visual tracking (AVT) algorithm. In AVT, the early selection process extracts a pool of attentional regions (ARs) that are defined as the salient image regions which have good localization properties, and the late selection process dynamically identifies a subset of discriminative attentional regions (D-ARs) through a discriminative learning on the historical data on the fly. The computationally demanding process of matching of the AR pool is done in an efficient and innovative way by using the idea in the locality-sensitive hashing (LSH) technique. The proposed AVT algorithm is general, robust and computationally efficient, as shown in extensive experiments on a large variety of real-world video. |
Author | Ying Wu Junsong Yuan Ming Yang |
Author_xml | – sequence: 1 surname: Ming Yang fullname: Ming Yang organization: Northwestern Univ., Evanston – sequence: 2 surname: Junsong Yuan fullname: Junsong Yuan organization: Northwestern Univ., Evanston – sequence: 3 surname: Ying Wu fullname: Ying Wu organization: Northwestern Univ., Evanston |
BookMark | eNpNjk1LxDAQhqOu4O7au-Clf6A1M0mb5CjFVWFB8eu6pNmJRGu7tFHw3xtxD87lZXh4PxZs1g89MXYGvATg5qJ5uX8okXNVCi1A6QO2AIlSAmiuDtkceC2K2oA5YplRes-UqWb_2AnLpumNp9PJVuk5g8edjcF2-UQduRiGPvfDmNsYqf_9EvkK02eSOFr3HvrXU3bsbTdRttcle15dPTU3xfru-ra5XBcBJcTCcUTvtXHYuq2QQECSo-NCoHSVSeU1aCLbUtWaNJf41mMF1ggpvEISS3b-lxuIaLMbw4cdvzcSFccU8gPOXUo- |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2007.383178 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Psychology Computer Science |
EISBN | 1424411807 9781424411801 |
EISSN | 1063-6919 |
EndPage | 8 |
ExternalDocumentID | 4270203 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-c022ff89c2bcd341e1e402c03324c59058618eeabe5b9814e0df251a9343f72e3 |
IEDL.DBID | RIE |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 01:48:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-c022ff89c2bcd341e1e402c03324c59058618eeabe5b9814e0df251a9343f72e3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_4270203 |
PublicationCentury | 2000 |
PublicationDate | 2007-06 |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06 |
PublicationDecade | 2000 |
PublicationTitle | 2007 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000818058 ssj0023720 ssj0003211698 |
Score | 1.9835017 |
Snippet | Long-duration tracking of general targets is quite challenging for computer vision, because in practice target may undergo large uncertainties in its visual... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Computer vision Data mining Humans Motion estimation Psychology Robustness Target tracking Uncertainty Visual perception Visual system |
Title | Spatial selection for attentional visual tracking |
URI | https://ieeexplore.ieee.org/document/4270203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnXaabhO_6cGj7dKmXzkPxxAmQ5zsNpr0BYawydYK-tf70jZVxIOnNjmUNknf9_v9AG59lZAITNBFJpUbplq6UqEmYZjmmbGweWZCA_PHeLYMH1bRqgN3bS8MIlbFZ-iZ2yqXn-9UaUJl49A0TxlozyN6fN2r1cZTDDSbzfCZMSfPJhZtRiEwbCxV5jPmbix8YZu8DCQat9hPzTiy-UwmxpOXxVONdEi-nG_Y2H6wsFRKaNqHuX39uvbk1SsL6anPX8iO__2-Yxh9t_s5i1aRnUAHtwPoN_ap0_z9B5qyFBB2bgC9VoB-DME3_MZ0np1DRa5DO-6QSewYBM-mrt153xxKuhT7TJkY_QiW0_vnycxtKBncDan6wlWk8rVOhQqkykkBoo_kgCrGyS5TkaANiP0UMZMYSUELiizXZEFlgodcJwHyU-hud1s8A4drFiG5U2ki4zCOEpFxzTmTAYluhhidw9Cs0PqtRt1YN4tz8ff0JfRsJR_zr6Bb7Eu8JnOhkDfVOfkCuy60og |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHuSEAsZvd_DooKPrtp6JBBUIMWC4kbV7TYgJGNhM9K_3dVunMR48be2tX-_7_X6E3HoqRBEYggtUKtePtHSlAo3CMEpiY2Gz2IQGJtNgtPAfl3xZI3dVLwwA5MVn0DW_eS4_2arMhMp6vmmeMtCeB6j3fV50a1URFQPOZnN8ZszQtwlElVPoGz6WPPcZMDcQnrBtXgYUjVn0p3LMbUaTit7gZfZcYB2iN-cZPrYfPCy5Gho2ycQuoKg-ee1mqeyqz1_Yjv9d4RHpfDf8ObNKlR2TGmxapFlaqE75_vc4ZUkg7FyLNCoR-tEmnmE4xhvt7HN6HTxzB41ix2B4lpXtzvt6n-En3cXKROk7ZDG8nw9GbknK4K5R2aeuQqWvdSRUX6oEVSB4gC6oogwtM8UFHkDgRQCxBC4FbijQRKMNFQvmMx32gZ2Q-ma7gVPiME05oEMVhTLwAx6KmGnGqOyj8KYA_Iy0zQ6t3grcjVW5Oed_T9-Qw9F8Ml6NH6ZPF6Rh6_qod0nq6S6DKzQeUnmd35kvay237w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Spatial+selection+for+attentional+visual+tracking&rft.au=Ming+Yang&rft.au=Junsong+Yuan&rft.au=Ying+Wu&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383178&rft.externalDocID=4270203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |