Spatial selection for attentional visual tracking

Long-duration tracking of general targets is quite challenging for computer vision, because in practice target may undergo large uncertainties in its visual appearance and the unconstrained environments may be cluttered and distractive, although tracking has never been a challenge to the human visua...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8
Main Authors Ming Yang, Junsong Yuan, Ying Wu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2007
Subjects
Online AccessGet full text
ISBN9781424411795
1424411793
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2007.383178

Cover

Abstract Long-duration tracking of general targets is quite challenging for computer vision, because in practice target may undergo large uncertainties in its visual appearance and the unconstrained environments may be cluttered and distractive, although tracking has never been a challenge to the human visual system. Psychological and cognitive findings indicate that the human perception is attentional and selective, and both early attentional selection that may be innate and late attentional selection that may be learned are necessary for human visual tracking. This paper proposes a new visual tracking approach by reflecting some aspects of spatial selective attention, and presents a novel attentional visual tracking (AVT) algorithm. In AVT, the early selection process extracts a pool of attentional regions (ARs) that are defined as the salient image regions which have good localization properties, and the late selection process dynamically identifies a subset of discriminative attentional regions (D-ARs) through a discriminative learning on the historical data on the fly. The computationally demanding process of matching of the AR pool is done in an efficient and innovative way by using the idea in the locality-sensitive hashing (LSH) technique. The proposed AVT algorithm is general, robust and computationally efficient, as shown in extensive experiments on a large variety of real-world video.
AbstractList Long-duration tracking of general targets is quite challenging for computer vision, because in practice target may undergo large uncertainties in its visual appearance and the unconstrained environments may be cluttered and distractive, although tracking has never been a challenge to the human visual system. Psychological and cognitive findings indicate that the human perception is attentional and selective, and both early attentional selection that may be innate and late attentional selection that may be learned are necessary for human visual tracking. This paper proposes a new visual tracking approach by reflecting some aspects of spatial selective attention, and presents a novel attentional visual tracking (AVT) algorithm. In AVT, the early selection process extracts a pool of attentional regions (ARs) that are defined as the salient image regions which have good localization properties, and the late selection process dynamically identifies a subset of discriminative attentional regions (D-ARs) through a discriminative learning on the historical data on the fly. The computationally demanding process of matching of the AR pool is done in an efficient and innovative way by using the idea in the locality-sensitive hashing (LSH) technique. The proposed AVT algorithm is general, robust and computationally efficient, as shown in extensive experiments on a large variety of real-world video.
Author Ying Wu
Junsong Yuan
Ming Yang
Author_xml – sequence: 1
  surname: Ming Yang
  fullname: Ming Yang
  organization: Northwestern Univ., Evanston
– sequence: 2
  surname: Junsong Yuan
  fullname: Junsong Yuan
  organization: Northwestern Univ., Evanston
– sequence: 3
  surname: Ying Wu
  fullname: Ying Wu
  organization: Northwestern Univ., Evanston
BookMark eNpNjk1LxDAQhqOu4O7au-Clf6A1M0mb5CjFVWFB8eu6pNmJRGu7tFHw3xtxD87lZXh4PxZs1g89MXYGvATg5qJ5uX8okXNVCi1A6QO2AIlSAmiuDtkceC2K2oA5YplRes-UqWb_2AnLpumNp9PJVuk5g8edjcF2-UQduRiGPvfDmNsYqf_9EvkK02eSOFr3HvrXU3bsbTdRttcle15dPTU3xfru-ra5XBcBJcTCcUTvtXHYuq2QQECSo-NCoHSVSeU1aCLbUtWaNJf41mMF1ggpvEISS3b-lxuIaLMbw4cdvzcSFccU8gPOXUo-
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2007.383178
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Psychology
Computer Science
EISBN 1424411807
9781424411801
EISSN 1063-6919
EndPage 8
ExternalDocumentID 4270203
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-c022ff89c2bcd341e1e402c03324c59058618eeabe5b9814e0df251a9343f72e3
IEDL.DBID RIE
ISBN 9781424411795
1424411793
ISSN 1063-6919
IngestDate Wed Aug 27 01:48:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-c022ff89c2bcd341e1e402c03324c59058618eeabe5b9814e0df251a9343f72e3
PageCount 8
ParticipantIDs ieee_primary_4270203
PublicationCentury 2000
PublicationDate 2007-06
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06
PublicationDecade 2000
PublicationTitle 2007 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818058
ssj0023720
ssj0003211698
Score 1.9835017
Snippet Long-duration tracking of general targets is quite challenging for computer vision, because in practice target may undergo large uncertainties in its visual...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer vision
Data mining
Humans
Motion estimation
Psychology
Robustness
Target tracking
Uncertainty
Visual perception
Visual system
Title Spatial selection for attentional visual tracking
URI https://ieeexplore.ieee.org/document/4270203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnXaabhO_6cGj7dKmXzkPxxAmQ5zsNpr0BYawydYK-tf70jZVxIOnNjmUNknf9_v9AG59lZAITNBFJpUbplq6UqEmYZjmmbGweWZCA_PHeLYMH1bRqgN3bS8MIlbFZ-iZ2yqXn-9UaUJl49A0TxlozyN6fN2r1cZTDDSbzfCZMSfPJhZtRiEwbCxV5jPmbix8YZu8DCQat9hPzTiy-UwmxpOXxVONdEi-nG_Y2H6wsFRKaNqHuX39uvbk1SsL6anPX8iO__2-Yxh9t_s5i1aRnUAHtwPoN_ap0_z9B5qyFBB2bgC9VoB-DME3_MZ0np1DRa5DO-6QSewYBM-mrt153xxKuhT7TJkY_QiW0_vnycxtKBncDan6wlWk8rVOhQqkykkBoo_kgCrGyS5TkaANiP0UMZMYSUELiizXZEFlgodcJwHyU-hud1s8A4drFiG5U2ki4zCOEpFxzTmTAYluhhidw9Cs0PqtRt1YN4tz8ff0JfRsJR_zr6Bb7Eu8JnOhkDfVOfkCuy60og
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHuSEAsZvd_DooKPrtp6JBBUIMWC4kbV7TYgJGNhM9K_3dVunMR48be2tX-_7_X6E3HoqRBEYggtUKtePtHSlAo3CMEpiY2Gz2IQGJtNgtPAfl3xZI3dVLwwA5MVn0DW_eS4_2arMhMp6vmmeMtCeB6j3fV50a1URFQPOZnN8ZszQtwlElVPoGz6WPPcZMDcQnrBtXgYUjVn0p3LMbUaTit7gZfZcYB2iN-cZPrYfPCy5Gho2ycQuoKg-ee1mqeyqz1_Yjv9d4RHpfDf8ObNKlR2TGmxapFlaqE75_vc4ZUkg7FyLNCoR-tEmnmE4xhvt7HN6HTxzB41ix2B4lpXtzvt6n-En3cXKROk7ZDG8nw9GbknK4K5R2aeuQqWvdSRUX6oEVSB4gC6oogwtM8UFHkDgRQCxBC4FbijQRKMNFQvmMx32gZ2Q-ma7gVPiME05oEMVhTLwAx6KmGnGqOyj8KYA_Iy0zQ6t3grcjVW5Oed_T9-Qw9F8Ml6NH6ZPF6Rh6_qod0nq6S6DKzQeUnmd35kvay237w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Spatial+selection+for+attentional+visual+tracking&rft.au=Ming+Yang&rft.au=Junsong+Yuan&rft.au=Ying+Wu&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383178&rft.externalDocID=4270203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon