Blending Modis and AMSR2 to Predict Daily Global Inundation Map in 1km Resolution
In cloudy area of the Earth, MODIS limits the sensor's ability to quantify biophysical processes in heterogeneous landscape. A passive microwave sensor AMSR2 is not subject to cloud contamination although its spatial resolution is relatively coarse. In this paper, a new spatial and temporal ada...
Saved in:
Published in | IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium pp. 6580 - 6583 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In cloudy area of the Earth, MODIS limits the sensor's ability to quantify biophysical processes in heterogeneous landscape. A passive microwave sensor AMSR2 is not subject to cloud contamination although its spatial resolution is relatively coarse. In this paper, a new spatial and temporal adaptive data fusion model algorithm is presented and demonstrated to blend MODIS and AMSR2 to predict daily land surface water coverage. The MODIS 8 day composite 1km normalized difference water index (NDWI) and AMSR2 daily 16km normalized difference frequency index (NDFI) are used to map land surface water coverage (LSWC) which is effective to monitor agriculture and flood monitoring issues. It was found that the algorithm accurately predicts daily LSWC of AMSR2 at an effective fractional coverage close to that of MODIS. |
---|---|
AbstractList | In cloudy area of the Earth, MODIS limits the sensor's ability to quantify biophysical processes in heterogeneous landscape. A passive microwave sensor AMSR2 is not subject to cloud contamination although its spatial resolution is relatively coarse. In this paper, a new spatial and temporal adaptive data fusion model algorithm is presented and demonstrated to blend MODIS and AMSR2 to predict daily land surface water coverage. The MODIS 8 day composite 1km normalized difference water index (NDWI) and AMSR2 daily 16km normalized difference frequency index (NDFI) are used to map land surface water coverage (LSWC) which is effective to monitor agriculture and flood monitoring issues. It was found that the algorithm accurately predicts daily LSWC of AMSR2 at an effective fractional coverage close to that of MODIS. |
Author | Youngjoo, Kwak Takeuchi, Wataru |
Author_xml | – sequence: 1 givenname: Wataru surname: Takeuchi fullname: Takeuchi, Wataru organization: Institute of Industrial Science, The University of Tokyo, Japan – sequence: 2 givenname: Kwak surname: Youngjoo fullname: Youngjoo, Kwak organization: International Centre for Water Hazard and Risk Management ICHARM, UNESCO, Japan |
BookMark | eNotkM9OwkAYxFejiYA8AZd9geJ--4fdPSJKJaFRWz2TbferWS1b0pYDby9GTjPzO0wyMyY3sY1IyAzYHIDZh026zItizhmYuVFgjLRXZGq1ASXMQoNi8pqM-DklmjFxR8Z9_302hjM2Iu-PDUYf4hfNWh966qKny6zIOR1a-tahD9VAn1xoTjRt2tI1dBOP0bshtJFm7kBDpPCzpzn2bXP8o_fktnZNj9OLTsjn-vlj9ZJsX9PNarlNApcwJKWopGK1qxel4E4bjwtW1R6kqyy32lbohUemJEqp_HkH00YZCwglyMpoMSGz_96AiLtDF_auO-0uD4hfT65QZQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS.2018.8518849 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9781538671504 1538671506 |
EISSN | 2153-7003 |
EndPage | 6583 |
ExternalDocumentID | 8518849 |
Genre | orig-research |
GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i241t-b3c450faf6b32a78de60cfd14ac92979ced3de054e445d6710785891e1b14c873 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:50:56 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-b3c450faf6b32a78de60cfd14ac92979ced3de054e445d6710785891e1b14c873 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8518849 |
PublicationCentury | 2000 |
PublicationDate | 2018-07 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07 |
PublicationDecade | 2010 |
PublicationTitle | IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 ssj0002685527 |
Score | 1.6740501 |
Snippet | In cloudy area of the Earth, MODIS limits the sensor's ability to quantify biophysical processes in heterogeneous landscape. A passive microwave sensor AMSR2... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6580 |
SubjectTerms | agriculture and flood monitoring Data fusion image enhancement Indexes Land surface MODIS Monitoring Optical surface waves Rivers Soil |
Title | Blending Modis and AMSR2 to Predict Daily Global Inundation Map in 1km Resolution |
URI | https://ieeexplore.ieee.org/document/8518849 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwHG62JSaefGzGd3rwKKxAKeXoaw8TjG4u2W2h7Y-EbMKi7DD_eltgMxoP3gikpPTX8rW_x_chdKUkJ0AcvZBcARYVvm_FGqasAEjicRXIsCSrjp7YYEIfp_60ga63tTAAUCafgW0uy1i-yuXKuMq63LCH0bCJmvrgVtVqbf0pLuOGTGzzF_Y0spGaZcghYXfYvxmNxyaVi9v1a37oqZRw0ttD0aYjVRbJ3F4Vwpafvzga_9vTfdT5LtzDz1tIOkANyA7RTr9U71230cutxhjzBEe5Sj9wnCmsT_IjFxe5bmdiNgW-j9PFGldaAHiYbVSXcBQvcZphZ_6Gjc-_mrEdNOk9vN4NrFpTwUo1VheW8CT1SRInTHhuHHAFjMhEOTQ2VglCCcpToPdxQKmvmN5_BNwID4IjHCp54B2hVpZncIywoXJhDGTCTKhOSUGBCODKJSD1xwcnqG0GZrasaDNm9Zic_n37DO0a41SZsOeoVbyv4ELjfSEuS0N_Ae3Tp-E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwHG7mjNGTj834tgePshUoUI6-9tCx6B7JbgttfyRkCouyw_zrbYHNaDx4a2hKSn-Fr_we34fQlRSMADHVi2RxMCh3HCNUMGV4QCKbSU_4OVl10Hc7Y_o4cSYVdL2uhQGAPPkMGrqZx_JlKhbaVdZkmj2M-htoU-G-YxXVWmuPiuUyTSe2-g7bCttIyTNkEr_Zbd8MhkOdzMUa5Y1-KKrkgNLaRcFqKkUeyayxyHhDfP5iafzvXPdQ_bt0Dz-vQWkfVSA5QFvtXL93WUMvtwpldA8OUhl_4DCRWP3LDyycpWqcjtpk-D6MX5e4UAPA3WSlu4SDcI7jBJuzN6y9_sWeraNx62F01zFKVQUjVmidGdwW1CFRGLnctkKPSXCJiKRJQ20XzxcgbQnqJAeUOtJVJxCPaelBMLlJBfPsQ1RN0gSOENZkLq4LInJ1sE4KToFwYNIiINTDe8eophdmOi-IM6blmpz8ffkSbXdGQW_a6_afTtGONlSRF3uGqtn7As4V-mf8Ijf6F-U_qys |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IGARSS+2018+-+2018+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=Blending+Modis+and+AMSR2+to+Predict+Daily+Global+Inundation+Map+in+1km+Resolution&rft.au=Takeuchi%2C+Wataru&rft.au=Youngjoo%2C+Kwak&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=6580&rft.epage=6583&rft_id=info:doi/10.1109%2FIGARSS.2018.8518849&rft.externalDocID=8518849 |