Blending Modis and AMSR2 to Predict Daily Global Inundation Map in 1km Resolution

In cloudy area of the Earth, MODIS limits the sensor's ability to quantify biophysical processes in heterogeneous landscape. A passive microwave sensor AMSR2 is not subject to cloud contamination although its spatial resolution is relatively coarse. In this paper, a new spatial and temporal ada...

Full description

Saved in:
Bibliographic Details
Published inIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium pp. 6580 - 6583
Main Authors Takeuchi, Wataru, Youngjoo, Kwak
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In cloudy area of the Earth, MODIS limits the sensor's ability to quantify biophysical processes in heterogeneous landscape. A passive microwave sensor AMSR2 is not subject to cloud contamination although its spatial resolution is relatively coarse. In this paper, a new spatial and temporal adaptive data fusion model algorithm is presented and demonstrated to blend MODIS and AMSR2 to predict daily land surface water coverage. The MODIS 8 day composite 1km normalized difference water index (NDWI) and AMSR2 daily 16km normalized difference frequency index (NDFI) are used to map land surface water coverage (LSWC) which is effective to monitor agriculture and flood monitoring issues. It was found that the algorithm accurately predicts daily LSWC of AMSR2 at an effective fractional coverage close to that of MODIS.
AbstractList In cloudy area of the Earth, MODIS limits the sensor's ability to quantify biophysical processes in heterogeneous landscape. A passive microwave sensor AMSR2 is not subject to cloud contamination although its spatial resolution is relatively coarse. In this paper, a new spatial and temporal adaptive data fusion model algorithm is presented and demonstrated to blend MODIS and AMSR2 to predict daily land surface water coverage. The MODIS 8 day composite 1km normalized difference water index (NDWI) and AMSR2 daily 16km normalized difference frequency index (NDFI) are used to map land surface water coverage (LSWC) which is effective to monitor agriculture and flood monitoring issues. It was found that the algorithm accurately predicts daily LSWC of AMSR2 at an effective fractional coverage close to that of MODIS.
Author Youngjoo, Kwak
Takeuchi, Wataru
Author_xml – sequence: 1
  givenname: Wataru
  surname: Takeuchi
  fullname: Takeuchi, Wataru
  organization: Institute of Industrial Science, The University of Tokyo, Japan
– sequence: 2
  givenname: Kwak
  surname: Youngjoo
  fullname: Youngjoo, Kwak
  organization: International Centre for Water Hazard and Risk Management ICHARM, UNESCO, Japan
BookMark eNotkM9OwkAYxFejiYA8AZd9geJ--4fdPSJKJaFRWz2TbferWS1b0pYDby9GTjPzO0wyMyY3sY1IyAzYHIDZh026zItizhmYuVFgjLRXZGq1ASXMQoNi8pqM-DklmjFxR8Z9_302hjM2Iu-PDUYf4hfNWh966qKny6zIOR1a-tahD9VAn1xoTjRt2tI1dBOP0bshtJFm7kBDpPCzpzn2bXP8o_fktnZNj9OLTsjn-vlj9ZJsX9PNarlNApcwJKWopGK1qxel4E4bjwtW1R6kqyy32lbohUemJEqp_HkH00YZCwglyMpoMSGz_96AiLtDF_auO-0uD4hfT65QZQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2018.8518849
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9781538671504
1538671506
EISSN 2153-7003
EndPage 6583
ExternalDocumentID 8518849
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-b3c450faf6b32a78de60cfd14ac92979ced3de054e445d6710785891e1b14c873
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-b3c450faf6b32a78de60cfd14ac92979ced3de054e445d6710785891e1b14c873
PageCount 4
ParticipantIDs ieee_primary_8518849
PublicationCentury 2000
PublicationDate 2018-07
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07
PublicationDecade 2010
PublicationTitle IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
PublicationTitleAbbrev IGARSS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
ssj0002685527
Score 1.6740501
Snippet In cloudy area of the Earth, MODIS limits the sensor's ability to quantify biophysical processes in heterogeneous landscape. A passive microwave sensor AMSR2...
SourceID ieee
SourceType Publisher
StartPage 6580
SubjectTerms agriculture and flood monitoring
Data fusion
image enhancement
Indexes
Land surface
MODIS
Monitoring
Optical surface waves
Rivers
Soil
Title Blending Modis and AMSR2 to Predict Daily Global Inundation Map in 1km Resolution
URI https://ieeexplore.ieee.org/document/8518849
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwHG62JSaefGzGd3rwKKxAKeXoaw8TjG4u2W2h7Y-EbMKi7DD_eltgMxoP3gikpPTX8rW_x_chdKUkJ0AcvZBcARYVvm_FGqasAEjicRXIsCSrjp7YYEIfp_60ga63tTAAUCafgW0uy1i-yuXKuMq63LCH0bCJmvrgVtVqbf0pLuOGTGzzF_Y0spGaZcghYXfYvxmNxyaVi9v1a37oqZRw0ttD0aYjVRbJ3F4Vwpafvzga_9vTfdT5LtzDz1tIOkANyA7RTr9U71230cutxhjzBEe5Sj9wnCmsT_IjFxe5bmdiNgW-j9PFGldaAHiYbVSXcBQvcZphZ_6Gjc-_mrEdNOk9vN4NrFpTwUo1VheW8CT1SRInTHhuHHAFjMhEOTQ2VglCCcpToPdxQKmvmN5_BNwID4IjHCp54B2hVpZncIywoXJhDGTCTKhOSUGBCODKJSD1xwcnqG0GZrasaDNm9Zic_n37DO0a41SZsOeoVbyv4ELjfSEuS0N_Ae3Tp-E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwHG7mjNGTj834tgePshUoUI6-9tCx6B7JbgttfyRkCouyw_zrbYHNaDx4a2hKSn-Fr_we34fQlRSMADHVi2RxMCh3HCNUMGV4QCKbSU_4OVl10Hc7Y_o4cSYVdL2uhQGAPPkMGrqZx_JlKhbaVdZkmj2M-htoU-G-YxXVWmuPiuUyTSe2-g7bCttIyTNkEr_Zbd8MhkOdzMUa5Y1-KKrkgNLaRcFqKkUeyayxyHhDfP5iafzvXPdQ_bt0Dz-vQWkfVSA5QFvtXL93WUMvtwpldA8OUhl_4DCRWP3LDyycpWqcjtpk-D6MX5e4UAPA3WSlu4SDcI7jBJuzN6y9_sWeraNx62F01zFKVQUjVmidGdwW1CFRGLnctkKPSXCJiKRJQ20XzxcgbQnqJAeUOtJVJxCPaelBMLlJBfPsQ1RN0gSOENZkLq4LInJ1sE4KToFwYNIiINTDe8eophdmOi-IM6blmpz8ffkSbXdGQW_a6_afTtGONlSRF3uGqtn7As4V-mf8Ijf6F-U_qys
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IGARSS+2018+-+2018+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=Blending+Modis+and+AMSR2+to+Predict+Daily+Global+Inundation+Map+in+1km+Resolution&rft.au=Takeuchi%2C+Wataru&rft.au=Youngjoo%2C+Kwak&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=6580&rft.epage=6583&rft_id=info:doi/10.1109%2FIGARSS.2018.8518849&rft.externalDocID=8518849