Rethinking the Inception Architecture for Computer Vision
Convolutional networks are at the core of most state of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2818 - 2826 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Convolutional networks are at the core of most state of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we are exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21:2% top-1 and 5:6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3:5% top-5 error and 17:3% top-1 error on the validation set and 3:6% top-5 error on the official test set. |
---|---|
AbstractList | Convolutional networks are at the core of most state of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we are exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21:2% top-1 and 5:6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3:5% top-5 error and 17:3% top-1 error on the validation set and 3:6% top-5 error on the official test set. |
Author | Ioffe, Sergey Wojna, Zbigniew Vanhoucke, Vincent Szegedy, Christian Shlens, Jon |
Author_xml | – sequence: 1 givenname: Christian surname: Szegedy fullname: Szegedy, Christian email: szegedy@google.com – sequence: 2 givenname: Vincent surname: Vanhoucke fullname: Vanhoucke, Vincent email: vanhoucke@google.com – sequence: 3 givenname: Sergey surname: Ioffe fullname: Ioffe, Sergey email: sioffe@google.com – sequence: 4 givenname: Jon surname: Shlens fullname: Shlens, Jon email: shlens@google.com – sequence: 5 givenname: Zbigniew surname: Wojna fullname: Wojna, Zbigniew email: zbigniewwojna@gmail.com |
BookMark | eNotjrtOwzAUQA0CiVIyMrH4BxJ87fg1VhGPSpVAFXStHPeaGKhTOe7A31MJprMcHZ1rcpHGhITcAmsAmL3vNq_rhjNQjWDmjFRWG2iVFsZIgHMyA6ZErSzYK1JN0ydjDKwyYOyM2DWWIaavmD5oGZAuk8dDiWOii-yHWNCXY0Yaxky7cX84Fsx0E6eTcEMug_uesPrnnLw_Prx1z_Xq5WnZLVZ15C2UuhdM9J610ve-7TXn1oOXKrg2AMrALXKNXDru0Qe-EzuHTCI6ZXplT_9iTu7-uhERt4cc9y7_bLU2TGktfgGOXkmp |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.308 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 2826 |
ExternalDocumentID | 7780677 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-b303bc045cbc4b7229c1c56fa4f1e5f29e27e25a2cecf2d3dae05eea68b698513 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-b303bc045cbc4b7229c1c56fa4f1e5f29e27e25a2cecf2d3dae05eea68b698513 |
PageCount | 9 |
ParticipantIDs | ieee_primary_7780677 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-09 |
PublicationDateYYYYMMDD | 2016-12-09 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-09 day: 09 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.6073081 |
Snippet | Convolutional networks are at the core of most state of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2818 |
SubjectTerms | Benchmark testing Computational efficiency Computational modeling Computer architecture Computer vision Convolution Training |
Title | Rethinking the Inception Architecture for Computer Vision |
URI | https://ieeexplore.ieee.org/document/7780677 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT56qtuKbHDy6225euzlKsahQKcWW3koeExRhK7q9-OtNdrfbIh68JcMuhAnhm2S-mQ-hG-EsTY2zkSPaRMxlNtJDpyMPjTqjglpaSrJMnsXDnD0t-bKFbptaGAAoyWcQh2GZy7drswlPZYM0zULDszZq-4tbVau1e0-RwmOPbObU32yEbDIKJKix7HpsDkaL6SwQu0RMg7LknrJKCSzjLppsl1TxSd7jTaFj8_2rW-N_13yI-rsSPjxtwOkItSA_Rt065sT1if7ypq2sw9bWQ3IGxWslqYB9eIgf85r6gu_2sg7YR7u4-XlRlqj30Xx8_zJ6iGqFhejNI3cRaQ9g2viozmjDdEqINInhwinmEuCOSCApEK6IAeOIpVbBkAMokWnvW57QE9TJ1zmcIsxVAsrZxDFDWSaF8qG7GSpLFAPmvz9DveCc1UfVRGNV--X8b_MFOgibU_JG5CXqFJ8buPLoX-jrctt_AHUsrno |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSECsZv9-DRFrrb3bZHQzSgQAgBwo3sx2w0JsVoufjr3W1LIcaDt3bSJptpm_e682YeQnfcaBopoz1DpPJCE2tPdoz0LDTKmHKqaW7JMhzx3ix8XrBFDd1XvTAAkIvPwHeHeS1fr9TabZW1oyh2A8_20L7FfRYU3VrbHZWEW_RJqnNq_214UtUUiPNj2U7ZbHfn44mTdnGfOm_JHW-VHFqeGmi4WVShKHn315n01feveY3_XfURam2b-PC4gqdjVIP0BDVK1onLb_rLhjbGDptYEyUTyF4LUwVsCSLup6X4BT_s1B2w5bu4unmeN6m30OzpcdrteaXHgvdmsTvzpIUwqSyvU1KFMiIkUYFi3IjQBMAMSYBEQJggCpQhmmoBHQYgeCxtbllAT1E9XaVwhjATAQijAxMqGsYJF5a8q47QRIQQ2uvPUdMlZ_lRjNFYlnm5-Dt8iw560-FgOeiPXi7RoXtQuYokuUL17HMN15YLZPImfwV-AMBuscM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Rethinking+the+Inception+Architecture+for+Computer+Vision&rft.au=Szegedy%2C+Christian&rft.au=Vanhoucke%2C+Vincent&rft.au=Ioffe%2C+Sergey&rft.au=Shlens%2C+Jon&rft.date=2016-12-09&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2818&rft.epage=2826&rft_id=info:doi/10.1109%2FCVPR.2016.308&rft.externalDocID=7780677 |