Identity-Aware Convolutional Neural Network for Facial Expression Recognition
Facial expression recognition suffers under realworldconditions, especially on unseen subjects due to highinter-subject variations. To alleviate variations introduced bypersonal attributes and achieve better facial expression recognitionperformance, a novel identity-aware convolutional neuralnetwork...
Saved in:
Published in | 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017) pp. 558 - 565 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facial expression recognition suffers under realworldconditions, especially on unseen subjects due to highinter-subject variations. To alleviate variations introduced bypersonal attributes and achieve better facial expression recognitionperformance, a novel identity-aware convolutional neuralnetwork (IACNN) is proposed. In particular, a CNN with a newarchitecture is employed as individual streams of a bi-streamidentity-aware network. An expression-sensitive contrastive lossis developed to measure the expression similarity to ensure thefeatures learned by the network are invariant to expressionvariations. More importantly, an identity-sensitive contrastiveloss is proposed to learn identity-related information from identitylabels to achieve identity-invariant expression recognition.Extensive experiments on three public databases including aspontaneous facial expression database have shown that theproposed IACNN achieves promising results in real world. |
---|---|
AbstractList | Facial expression recognition suffers under realworldconditions, especially on unseen subjects due to highinter-subject variations. To alleviate variations introduced bypersonal attributes and achieve better facial expression recognitionperformance, a novel identity-aware convolutional neuralnetwork (IACNN) is proposed. In particular, a CNN with a newarchitecture is employed as individual streams of a bi-streamidentity-aware network. An expression-sensitive contrastive lossis developed to measure the expression similarity to ensure thefeatures learned by the network are invariant to expressionvariations. More importantly, an identity-sensitive contrastiveloss is proposed to learn identity-related information from identitylabels to achieve identity-invariant expression recognition.Extensive experiments on three public databases including aspontaneous facial expression database have shown that theproposed IACNN achieves promising results in real world. |
Author | Shizhong Han Jie Cai Yan Tong Zibo Meng Ping Liu |
Author_xml | – sequence: 1 surname: Zibo Meng fullname: Zibo Meng organization: Dept. of Comput. Sci. & Eng., South Carolina Univ., Columbia, SC, USA – sequence: 2 surname: Ping Liu fullname: Ping Liu organization: Sony Electron., USA – sequence: 3 surname: Jie Cai fullname: Jie Cai organization: Dept. of Comput. Sci. & Eng., South Carolina Univ., Columbia, SC, USA – sequence: 4 surname: Shizhong Han fullname: Shizhong Han organization: Dept. of Comput. Sci. & Eng., South Carolina Univ., Columbia, SC, USA – sequence: 5 surname: Yan Tong fullname: Yan Tong organization: Dept. of Comput. Sci. & Eng., South Carolina Univ., Columbia, SC, USA |
BookMark | eNotjL1OwzAURo0EA5ROjCx5gYTrvzgeq6gplQpICObK2NfIItiVk1L69qTAdKRP53xX5DymiITcUKgoBX3XrSoGVFVUwBmZa9VQCRoEMA6X5GHtMI5hPJaLg8lYtCl-pX4_hhRNXzziPv9iPKT8UfiUi87YME3L713GYZi04hlteo_hlFyTC2_6Aef_nJHXbvnS3pebp9W6XWzKwAQdS-O8clZKJ8BTKhsmmAWtUfI377TjUhhhFAfTTIYFr2vroWbGCouco-Yzcvv3GxBxu8vh0-TjVumaKk35DySMSq8 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/FG.2017.140 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509040230 1509040234 |
EndPage | 565 |
ExternalDocumentID | 7961791 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i241t-adf7dc55d40f1158242c099e53bfd9d354a4a730a8d40c0f96cf062ac4ce33e93 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:04 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-adf7dc55d40f1158242c099e53bfd9d354a4a730a8d40c0f96cf062ac4ce33e93 |
PageCount | 8 |
ParticipantIDs | ieee_primary_7961791 |
PublicationCentury | 2000 |
PublicationDate | 2017-05 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05 |
PublicationDecade | 2010 |
PublicationTitle | 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017) |
PublicationTitleAbbrev | FG |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.1933687 |
Snippet | Facial expression recognition suffers under realworldconditions, especially on unseen subjects due to highinter-subject variations. To alleviate variations... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 558 |
SubjectTerms | Face recognition Feature extraction Image recognition Measurement Spatiotemporal phenomena Training |
Title | Identity-Aware Convolutional Neural Network for Facial Expression Recognition |
URI | https://ieeexplore.ieee.org/document/7961791 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL1se_JJZRO_yYOPZmub9COPIqtDmIg42NtIk1sQpRPp_Pr13qTdRPHBp5ZyISW3yblJzzkBOHMO4FmYWl4YUXBp44jrtNTchqHCOBMmQu_2eZNMZvJ6Hs87cL7RwiCiJ5_h0N36f_l2aVZuq2yUqsS5aXahSwu3RqvVSu7CQI3yK8fUSmnsBz-OSvFIkW_DdN1GQxB5HK7qYmg-f9kv_vcldmDwrcljtxu02YUOVn2YtjrbD37xpl-QUexr-y3pJ-aMN_zFM70Zlacs126LnI3fW_5rxe7WDKJlNYBZPr6_nPD2gAT-QMBbc23L1Jo4tjIoqbLLCG4NVXwYi6K0yopYaqlpCOuMIkxQqsSUQRJpIw0KgUrsQa9aVrgPjJCssIhRRMmRmqYxo6QJNa1gDcUn4QH0XVcsnhsPjEXbC4d_Pz6CLZeKhhh4DL36ZYUnBN51ceqz9gUFA53g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7M-aBPKpt4Nw8-mq2XpJdHkdWp2xDZYG8jTU5BlE5G5-3Xe9LWieKDTw3lQEpO0-80-b4vAGfWATxyQ8NT7adcGOlxFWaKG9eNUUa-9rB0-xwF_Ym4mcppA85XWhhELMln2LHNci_fzPXSLpV1wziwbpprsE64L91KrVWL7lwn7iZXlqsV0ux3fhyWUmJFsgXDr14qishjZ1mkHf3xy4Dxv4-xDe1vVR67W-HNDjQwb8GwVtq-84tXtUBGsS_126SemLXeKC8l15tRgcoSZRfJWe-tZsDm7P6LQzTP2zBJeuPLPq-PSOAPBL0FVyYLjZbSCCej2i4iwNVU86H008zExpdCCUWTWEUUoZ0sDnTmBJ7SQqPvY-zvQjOf57gHjLAsNYieR-kRij5kOhbaVfQPqyk-cPehZYdi9ly5YMzqUTj4-_YpbPTHw8FscD26PYRNm5aKJngEzWKxxGOC8iI9KTP4CW_ToSk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+12th+IEEE+International+Conference+on+Automatic+Face+%26+Gesture+Recognition+%28FG+2017%29&rft.atitle=Identity-Aware+Convolutional+Neural+Network+for+Facial+Expression+Recognition&rft.au=Zibo+Meng&rft.au=Ping+Liu&rft.au=Jie+Cai&rft.au=Shizhong+Han&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=558&rft.epage=565&rft_id=info:doi/10.1109%2FFG.2017.140&rft.externalDocID=7961791 |