Connecting the Out-of-Sample and Pre-Image Problems in Kernel Methods

Kernel methods have been widely studied in the field of pattern recognition. These methods implicitly map, "the kernel trick," the data into a space which is more appropriate for analysis. Many manifold learning and dimensionality reduction techniques are simply kernel methods for which th...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8
Main Authors Arias, P., Randall, G., Sapiro, G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2007
Subjects
Online AccessGet full text
ISBN9781424411795
1424411793
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2007.383038

Cover

Abstract Kernel methods have been widely studied in the field of pattern recognition. These methods implicitly map, "the kernel trick," the data into a space which is more appropriate for analysis. Many manifold learning and dimensionality reduction techniques are simply kernel methods for which the mapping is explicitly computed. In such cases, two problems related with the mapping arise: The out-of-sample extension and the pre-image computation. In this paper we propose a new pre-image method based on the Nystrom formulation for the out-of-sample extension, showing the connections between both problems. We also address the importance of normalization in the feature space, which has been ignored by standard pre-image algorithms. As an example, we apply these ideas to the Gaussian kernel, and relate our approach to other popular pre-image methods. Finally, we show the application of these techniques in the study of dynamic shapes.
AbstractList Kernel methods have been widely studied in the field of pattern recognition. These methods implicitly map, "the kernel trick," the data into a space which is more appropriate for analysis. Many manifold learning and dimensionality reduction techniques are simply kernel methods for which the mapping is explicitly computed. In such cases, two problems related with the mapping arise: The out-of-sample extension and the pre-image computation. In this paper we propose a new pre-image method based on the Nystrom formulation for the out-of-sample extension, showing the connections between both problems. We also address the importance of normalization in the feature space, which has been ignored by standard pre-image algorithms. As an example, we apply these ideas to the Gaussian kernel, and relate our approach to other popular pre-image methods. Finally, we show the application of these techniques in the study of dynamic shapes.
Author Randall, G.
Sapiro, G.
Arias, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Arias
  fullname: Arias, P.
– sequence: 2
  givenname: G.
  surname: Randall
  fullname: Randall, G.
– sequence: 3
  givenname: G.
  surname: Sapiro
  fullname: Sapiro, G.
BookMark eNpNj01Lw0AYhFetYFtzF7zsH9j67keyu0cJVYuVFr-uZTd5t40km5LEg__egD04lxl4mIGZkUlsIxJyw2HBOdi7_HP7uhAAeiGNBGnOyIwroRTnBvQ5mXLIJMsstxcksdqcmLbp5B-7Iknff8EoM9ZSMyXLvI0Ri6GKezockG6-B9YG9uaaY43UxZJuO2Srxu1xTK2vselpFekzdhFr-oLDoS37a3IZXN1jcvI5-XhYvudPbL15XOX3a1YJxQfmCgwKRAjCgZOlM4VJealUSDPHwaNw1oxIaF9k3qpUofGqDIDam9QGkHNy-7dbIeLu2FWN6352SmgYH8pfLNpRCQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2007.383038
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1424411807
9781424411801
EISSN 1063-6919
EndPage 8
ExternalDocumentID 4270063
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-acef402ff2a0a3da8c851d44f56a10be2a982a027bc6b9454e8b4df0e7b859f03
IEDL.DBID RIE
ISBN 9781424411795
1424411793
ISSN 1063-6919
IngestDate Wed Aug 27 01:48:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-acef402ff2a0a3da8c851d44f56a10be2a982a027bc6b9454e8b4df0e7b859f03
PageCount 8
ParticipantIDs ieee_primary_4270063
PublicationCentury 2000
PublicationDate 2007-06
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06
PublicationDecade 2000
PublicationTitle 2007 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818058
ssj0023720
ssj0003211698
Score 1.8543134
Snippet Kernel methods have been widely studied in the field of pattern recognition. These methods implicitly map, "the kernel trick," the data into a space which is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algorithm design and analysis
Data visualization
Gaussian distribution
Image denoising
Joining processes
Kernel
Pattern recognition
Principal component analysis
Probability density function
Shape
Title Connecting the Out-of-Sample and Pre-Image Problems in Kernel Methods
URI https://ieeexplore.ieee.org/document/4270063
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxm4fjxHPVqoAKFVDUrbKTs1QBKWqThV_POS8QYmCLHSmJHSd35---7wi54higheCFTPBIMg5CMa0wag1MApEPOpTKEoVn92K64LfLYNki1w0XBgCK5DMY2MMCy082cW63yobcoqTCb5M2LrOSq9Xsp1hpthrhs20fIxshG0TBs9VYCuRT-ExIV9YkLyuJ5tfaT1U7qPFMRw5HL_PHUukQYznH0lh-VGEpjNCkS2b145e5J6-DPNOD-POXsuN_x7dP-t90PzpvDNkBaUF6SLqVf0qrr3-HXXUJiLqvR8ZFokxsc6cpupL0Ic_YxrAnZUWHqUoTvDCwm3f8a9lb2No1O7pO6R1sU3ijs6J-9a5PFpPx82jKqsoMbI0WP2MqBoOBpzGecpSfqChGxy3h3ARCuY4GT8kIT3mhjoWWPOAQaZ4YB0IdBdI4_hHppJsUjgkV-Ja0Ug5oKdF5DKQfK1djkBkbozzjnpCenajVRym-sarm6PTv7jOyVyf0Oe456WTbHC7Qa8j0ZbFcvgBHUrgF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWDiW3zjgRG3TuI48Vy1aoECAorYKjs5SxWQIpou_HrOaVwQYmCLbSmR7SR3z3f3HiHnAgFaAmHCpEgVEyA1MxpRa2xzSCMwidKuUHh4I_sjcfkcPzfIxbIWBgCq5DNoucsqlp9Ps7k7KmsLFyWV0QpZRbsv4kW11vJExZGz-Rifa0eIbaRaxhRCp8dSxT5lxKQKlC_zcqRokWd_qtuxj2hy1e483d0vuA4RzXFXyPJDh6UyQ70NMvQTWGSfvLTmpWlln7-4Hf87w02y-13wR--WpmyLNKDYJhu1h0rr73-GXV4EwvftkG6VKpO57GmKziS9nZdsatmDdrTDVBc53hjY4A3_W-4RTr1mRicFvYKPAl7psFKwnu2SUa_72OmzWpuBTdDml0xnYBF6WhtqrqNcpxm6brkQNpY64AZCrVIcChOTSaNwtyA1IrccEpPGyvJojzSLaQH7hErcJaM1B6MUuo-xijIdGISZmbU6tMEB2XELNX5f0G-M6zU6_Lv7jKz1H4fX4-vBzdURWffpfTw4Js3yYw4n6EOU5rR6db4AIqS7Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Connecting+the+Out-of-Sample+and+Pre-Image+Problems+in+Kernel+Methods&rft.au=Arias%2C+P.&rft.au=Randall%2C+G.&rft.au=Sapiro%2C+G.&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383038&rft.externalDocID=4270063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon