Loop closure detection for visual SLAM systems using deep neural networks
The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of localization algorithms if the loops are checked correctly. Traditional loop closure detection approaches take advantage of Bag-of-Words model, wh...
Saved in:
Published in | 2015 34th Chinese Control Conference (CCC) pp. 5851 - 5856 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
Technical Committee on Control Theory, Chinese Association of Automation
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of localization algorithms if the loops are checked correctly. Traditional loop closure detection approaches take advantage of Bag-of-Words model, which clusters the feature descriptors as words and measures the similarity between the observations in the word space. However, the features are usually designed artificially and may not be suitable for data from new-coming sensors. In this paper a novel loop closure detection approach is proposed that learns features from raw data using deep neural networks instead of common visual features. We discuss the details of the method of training neural networks. Experiments on an open dataset are also demonstrated to evaluate the performance of the proposed method. It can be seen that the neural network is feasible to solve this problem. |
---|---|
AbstractList | The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of localization algorithms if the loops are checked correctly. Traditional loop closure detection approaches take advantage of Bag-of-Words model, which clusters the feature descriptors as words and measures the similarity between the observations in the word space. However, the features are usually designed artificially and may not be suitable for data from new-coming sensors. In this paper a novel loop closure detection approach is proposed that learns features from raw data using deep neural networks instead of common visual features. We discuss the details of the method of training neural networks. Experiments on an open dataset are also demonstrated to evaluate the performance of the proposed method. It can be seen that the neural network is feasible to solve this problem. |
Author | Xiang Gao Tao Zhang |
Author_xml | – sequence: 1 givenname: Xiang surname: Gao fullname: Gao, Xiang – sequence: 2 givenname: Tao surname: Zhang fullname: Zhang, Tao |
BookMark | eNqNkL1OwzAUhQ0CibbwArB4ZEnxtePYHquIn0pBDMAcxekNGNI42Amob09Q-wBMZzifjnS-OTnpfIeEXAJbAjBzk7-7PF9yBnKpeMaklEdkbrQGmQlt5DGZgRFpAirTZ2Qe4wdjGTMgZmRdeN_TuvVxDEg3OGA9ON_Rxgf67eJYtfS5WD3SuIsDbiMdo-veJg572uEYprrD4ceHz3hOTpuqjXhxyAV5vbt9yR-S4ul-na-KxPEUhqSyIOuKyxRspqxCsGLTgDUpCCk4aJNxbKxRqkGVImgJtdXKGo1Ys0Y2YkGu97t98F8jxqHculhj21Yd-jGWfyelBsX5P1ApJJsM6Qm92qMOEcs-uG0VduVBpvgFU_pqVA |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IL CBEJK RIE RIL 7SC 7SP 8FD JQ2 L7M L~C L~D 7QO FR3 P64 |
DOI | 10.1109/ChiCC.2015.7260555 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Technology Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9881563895 9789881563897 |
EISSN | 1934-1768 |
EndPage | 5856 |
ExternalDocumentID | 7260555 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL 7SC 7SP 8FD JQ2 L7M L~C L~D 7QO FR3 P64 |
ID | FETCH-LOGICAL-i241t-ab15ca2541b67b7e1b3df1b941353218962efb977fe74e1851cb87b98eec0f5f3 |
IEDL.DBID | RIE |
IngestDate | Fri Jul 11 03:34:53 EDT 2025 Thu Jul 10 18:28:07 EDT 2025 Wed Aug 27 02:42:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-ab15ca2541b67b7e1b3df1b941353218962efb977fe74e1851cb87b98eec0f5f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1753503898 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1753503898 ieee_primary_7260555 proquest_miscellaneous_1768581722 |
PublicationCentury | 2000 |
PublicationDate | 20150701 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 20150701 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 34th Chinese Control Conference (CCC) |
PublicationTitleAbbrev | ChiCC |
PublicationYear | 2015 |
Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
SSID | ssj0060913 ssj0001766686 |
Score | 2.2159836 |
Snippet | The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 5851 |
SubjectTerms | Closures Clusters Conferences Deep Neural Networks Denoising Autoencoder Feature extraction Localization Loop Closure Detection Machine learning Mathematical models Neural networks Position (location) Similarity Simultaneous localization and mapping Sparse matrices Training Visual Visualization |
Title | Loop closure detection for visual SLAM systems using deep neural networks |
URI | https://ieeexplore.ieee.org/document/7260555 https://www.proquest.com/docview/1753503898 https://www.proquest.com/docview/1768581722 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTnrxxybOX0TwaLtmTZr2KMUxZRNBB7uVpnnR4WiHbT3415u03RQV8VZICOE1vPe9l-99QegiEW7MXepZ0mHMokq6lk7BiAXaG-q8hwtPmIL-9M4bz-jtnM1b6HLTCwMAFfkMbPNZ3eXLLClNqWzADfhmrI3aOnGre7U-6ylcA3EjhVZ7Yc_oXa6bZJxgED4vwtAwuZjdrNI8p_LDB1eBZbSDpust1XySF7sshJ28f1Nr_O-ed1Hvs4UP32-C0x5qQbqPtr-oD3bRzSTLVjhZZqZIiCUUFSsrxRrG4rdFXsZL_DC5muJa7DnHhiL_pOfBChsVTD2c1hzyvIdmo-vHcGw1LytYCx2xCysWhCWxzg2J8LjgQIQrFREBNa9g6KAfeENQQkNDBZyCDukkET4XgQ-QOIop9wB10iyFQ4SJUswPIHBd6lAiVSCBxhRAONzjrkz6qGuMEq1q8YyosUcfna_NHukDbW4p4hSyMo-MdGgl--f_NcfI5mvsNTz6ffljtGX-dc2rPUGd4rWEU40eCnFWHZsPbsLDpA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7mfFBf_LGJ82cEH-3WrkmzPkpxbNoNwQ32Vpr2osPRDtf64F9v0m5TVMS3QkII13D33eW7LwBXkbBDblPHiE3GDCpj21ApmGWg8oYq7-HCEbqgPxg6vTG9m7BJBa7XvTCIWJDPsKk_i7v8OI1yXSprcQ2-GduATRX3Wbvs1vqsqHAFxbUYWumHHa14uWqTMd2W9zz1PM3lYs3lOssHVX544SK0dHdhsNpUySh5aeaZaEbv3_Qa_7vrPah_NvGRh3V42ocKJgew80V_sAZ9P03nJJqlukxIYswKXlZCFJAlb9NFHs7Io38zIKXc84JokvyTmodzonUw1XBSssgXdRh3b0dez1i-rWBMVczOjFBYLApVdmgJhwuOlrBjaQmX6ncwVNh3nTZKocChRE5RBXUrEh0u3A5iZEom7UOoJmmCR0AsKVnHRde2qUmtWLox0pAiCpM73I6jBtS0UYJ5KZ8RLO3RgMuV2QN1pPU9RZhgmi8CLR5aCP91_pqjhfMV-mof_778BWz1RgM_8PvD-xPY1v-9ZNmeQjV7zfFMYYlMnBdH6APPx8bu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+34th+Chinese+Control+Conference+%28CCC%29&rft.atitle=Loop+closure+detection+for+visual+SLAM+systems+using+deep+neural+networks&rft.au=Xiang+Gao&rft.au=Tao+Zhang&rft.date=2015-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=5851&rft.epage=5856&rft_id=info:doi/10.1109%2FChiCC.2015.7260555&rft.externalDocID=7260555 |