Loop closure detection for visual SLAM systems using deep neural networks

The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of localization algorithms if the loops are checked correctly. Traditional loop closure detection approaches take advantage of Bag-of-Words model, wh...

Full description

Saved in:
Bibliographic Details
Published in2015 34th Chinese Control Conference (CCC) pp. 5851 - 5856
Main Authors Gao, Xiang, Zhang, Tao
Format Conference Proceeding Journal Article
LanguageEnglish
Published Technical Committee on Control Theory, Chinese Association of Automation 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of localization algorithms if the loops are checked correctly. Traditional loop closure detection approaches take advantage of Bag-of-Words model, which clusters the feature descriptors as words and measures the similarity between the observations in the word space. However, the features are usually designed artificially and may not be suitable for data from new-coming sensors. In this paper a novel loop closure detection approach is proposed that learns features from raw data using deep neural networks instead of common visual features. We discuss the details of the method of training neural networks. Experiments on an open dataset are also demonstrated to evaluate the performance of the proposed method. It can be seen that the neural network is feasible to solve this problem.
AbstractList The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of localization algorithms if the loops are checked correctly. Traditional loop closure detection approaches take advantage of Bag-of-Words model, which clusters the feature descriptors as words and measures the similarity between the observations in the word space. However, the features are usually designed artificially and may not be suitable for data from new-coming sensors. In this paper a novel loop closure detection approach is proposed that learns features from raw data using deep neural networks instead of common visual features. We discuss the details of the method of training neural networks. Experiments on an open dataset are also demonstrated to evaluate the performance of the proposed method. It can be seen that the neural network is feasible to solve this problem.
Author Xiang Gao
Tao Zhang
Author_xml – sequence: 1
  givenname: Xiang
  surname: Gao
  fullname: Gao, Xiang
– sequence: 2
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
BookMark eNqNkL1OwzAUhQ0CibbwArB4ZEnxtePYHquIn0pBDMAcxekNGNI42Amob09Q-wBMZzifjnS-OTnpfIeEXAJbAjBzk7-7PF9yBnKpeMaklEdkbrQGmQlt5DGZgRFpAirTZ2Qe4wdjGTMgZmRdeN_TuvVxDEg3OGA9ON_Rxgf67eJYtfS5WD3SuIsDbiMdo-veJg572uEYprrD4ceHz3hOTpuqjXhxyAV5vbt9yR-S4ul-na-KxPEUhqSyIOuKyxRspqxCsGLTgDUpCCk4aJNxbKxRqkGVImgJtdXKGo1Ys0Y2YkGu97t98F8jxqHculhj21Yd-jGWfyelBsX5P1ApJJsM6Qm92qMOEcs-uG0VduVBpvgFU_pqVA
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7QO
FR3
P64
DOI 10.1109/ChiCC.2015.7260555
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Technology Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9881563895
9789881563897
EISSN 1934-1768
EndPage 5856
ExternalDocumentID 7260555
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7QO
FR3
P64
ID FETCH-LOGICAL-i241t-ab15ca2541b67b7e1b3df1b941353218962efb977fe74e1851cb87b98eec0f5f3
IEDL.DBID RIE
IngestDate Fri Jul 11 03:34:53 EDT 2025
Thu Jul 10 18:28:07 EDT 2025
Wed Aug 27 02:42:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-ab15ca2541b67b7e1b3df1b941353218962efb977fe74e1851cb87b98eec0f5f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1753503898
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1753503898
ieee_primary_7260555
proquest_miscellaneous_1768581722
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 20150701
  day: 01
PublicationDecade 2010
PublicationTitle 2015 34th Chinese Control Conference (CCC)
PublicationTitleAbbrev ChiCC
PublicationYear 2015
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
ssj0001766686
Score 2.2159836
Snippet The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 5851
SubjectTerms Closures
Clusters
Conferences
Deep Neural Networks
Denoising Autoencoder
Feature extraction
Localization
Loop Closure Detection
Machine learning
Mathematical models
Neural networks
Position (location)
Similarity
Simultaneous localization and mapping
Sparse matrices
Training
Visual
Visualization
Title Loop closure detection for visual SLAM systems using deep neural networks
URI https://ieeexplore.ieee.org/document/7260555
https://www.proquest.com/docview/1753503898
https://www.proquest.com/docview/1768581722
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTnrxxybOX0TwaLtmTZr2KMUxZRNBB7uVpnnR4WiHbT3415u03RQV8VZICOE1vPe9l-99QegiEW7MXepZ0mHMokq6lk7BiAXaG-q8hwtPmIL-9M4bz-jtnM1b6HLTCwMAFfkMbPNZ3eXLLClNqWzADfhmrI3aOnGre7U-6ylcA3EjhVZ7Yc_oXa6bZJxgED4vwtAwuZjdrNI8p_LDB1eBZbSDpust1XySF7sshJ28f1Nr_O-ed1Hvs4UP32-C0x5qQbqPtr-oD3bRzSTLVjhZZqZIiCUUFSsrxRrG4rdFXsZL_DC5muJa7DnHhiL_pOfBChsVTD2c1hzyvIdmo-vHcGw1LytYCx2xCysWhCWxzg2J8LjgQIQrFREBNa9g6KAfeENQQkNDBZyCDukkET4XgQ-QOIop9wB10iyFQ4SJUswPIHBd6lAiVSCBxhRAONzjrkz6qGuMEq1q8YyosUcfna_NHukDbW4p4hSyMo-MdGgl--f_NcfI5mvsNTz6ffljtGX-dc2rPUGd4rWEU40eCnFWHZsPbsLDpA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7mfFBf_LGJ82cEH-3WrkmzPkpxbNoNwQ32Vpr2osPRDtf64F9v0m5TVMS3QkII13D33eW7LwBXkbBDblPHiE3GDCpj21ApmGWg8oYq7-HCEbqgPxg6vTG9m7BJBa7XvTCIWJDPsKk_i7v8OI1yXSprcQ2-GduATRX3Wbvs1vqsqHAFxbUYWumHHa14uWqTMd2W9zz1PM3lYs3lOssHVX544SK0dHdhsNpUySh5aeaZaEbv3_Qa_7vrPah_NvGRh3V42ocKJgew80V_sAZ9P03nJJqlukxIYswKXlZCFJAlb9NFHs7Io38zIKXc84JokvyTmodzonUw1XBSssgXdRh3b0dez1i-rWBMVczOjFBYLApVdmgJhwuOlrBjaQmX6ncwVNh3nTZKocChRE5RBXUrEh0u3A5iZEom7UOoJmmCR0AsKVnHRde2qUmtWLox0pAiCpM73I6jBtS0UYJ5KZ8RLO3RgMuV2QN1pPU9RZhgmi8CLR5aCP91_pqjhfMV-mof_778BWz1RgM_8PvD-xPY1v-9ZNmeQjV7zfFMYYlMnBdH6APPx8bu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+34th+Chinese+Control+Conference+%28CCC%29&rft.atitle=Loop+closure+detection+for+visual+SLAM+systems+using+deep+neural+networks&rft.au=Xiang+Gao&rft.au=Tao+Zhang&rft.date=2015-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=5851&rft.epage=5856&rft_id=info:doi/10.1109%2FChiCC.2015.7260555&rft.externalDocID=7260555