Human Behavior Based Predictive Brake Assistance

Driver assistance systems have both the potential to alert the driver to critical situations and distract or annoy the driver if the driver is already aware of the situation. As systems attempt to preemptively warn drivers more and more in advance, this problem becomes exacerbated. We present a pred...

Full description

Saved in:
Bibliographic Details
Published in2006 IEEE Intelligent Vehicles Symposium pp. 8 - 12
Main Authors Mccall, J.C., Trivedi, M.M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2006
Subjects
Online AccessGet full text
ISBN490112286X
9784901122863
ISSN1931-0587
DOI10.1109/IVS.2006.1689597

Cover

Loading…
Abstract Driver assistance systems have both the potential to alert the driver to critical situations and distract or annoy the driver if the driver is already aware of the situation. As systems attempt to preemptively warn drivers more and more in advance, this problem becomes exacerbated. We present a predictive braking assistance system that identifies not only the need for braking action, but also whether or not a braking action is being planned by the driver. Our system uses a Bayesian framework to determine the criticality of the situation by assessing (1) the probability that braking should be performed given observations of the vehicle and surround and (2) the probability that the driver intends to perform a braking action. We train and evaluate our system using over 22 hours of data collected from real driving scenarios with 28 different drivers
AbstractList Driver assistance systems have both the potential to alert the driver to critical situations and distract or annoy the driver if the driver is already aware of the situation. As systems attempt to preemptively warn drivers more and more in advance, this problem becomes exacerbated. We present a predictive braking assistance system that identifies not only the need for braking action, but also whether or not a braking action is being planned by the driver. Our system uses a Bayesian framework to determine the criticality of the situation by assessing (1) the probability that braking should be performed given observations of the vehicle and surround and (2) the probability that the driver intends to perform a braking action. We train and evaluate our system using over 22 hours of data collected from real driving scenarios with 28 different drivers
Author Mccall, J.C.
Trivedi, M.M.
Author_xml – sequence: 1
  givenname: J.C.
  surname: Mccall
  fullname: Mccall, J.C.
  email: jmccall@ucsd.edu
  organization: Computer Vision and Robotics Research Laboratory, University of California, San Diego. jmccall@ucsd.edu
– sequence: 2
  givenname: M.M.
  surname: Trivedi
  fullname: Trivedi, M.M.
  email: mtrivedi@ucsd.edu
  organization: Comput. Vision & Robotics Res. Lab., California Univ., San Diego, CA
BookMark eNotj01Lw0AUABesYFO9C17yBxLfe5v9OjZFbaGg0Creyib7gqs2lWws-O8V7Gkuw8BkYtIfehbiGqFEBHe7etmUBKBL1NYpZ85EVjlAJLL6dSKm6CQWoKy5EFlK7wBKEeFUwPJ77_u85jd_jIchr33ikD8NHGI7xiPn9eA_OJ-nFNPo-5YvxXnnPxNfnTgTz_d328WyWD8-rBbzdRGpwrHwVjWtsU0DBEiObWXJMJA2QYcG2WnHMoD1nQvSIWltsKv-_CAJqVVyJm7-u5GZd19D3PvhZ3e6k78x0UOZ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IVS.2006.1689597
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 12
ExternalDocumentID 1689597
Genre orig-research
GroupedDBID 29I
29J
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i241t-a85bc78bb020129e84827e0267d6db1e969e3d08af9d39126671f48bbd3212c53
IEDL.DBID RIE
ISBN 490112286X
9784901122863
ISSN 1931-0587
IngestDate Wed Aug 27 02:53:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-a85bc78bb020129e84827e0267d6db1e969e3d08af9d39126671f48bbd3212c53
PageCount 5
ParticipantIDs ieee_primary_1689597
PublicationCentury 2000
PublicationDate 20060000
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 20060000
PublicationDecade 2000
PublicationTitle 2006 IEEE Intelligent Vehicles Symposium
PublicationTitleAbbrev IVS
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0055221
ssj0000454314
Score 1.7662661
Snippet Driver assistance systems have both the potential to alert the driver to critical situations and distract or annoy the driver if the driver is already aware of...
SourceID ieee
SourceType Publisher
StartPage 8
SubjectTerms Adaptive control
Bayesian methods
Control systems
Hidden Markov models
Humans
Programmable control
Remotely operated vehicles
Road accidents
Sensor systems
Vehicle driving
Title Human Behavior Based Predictive Brake Assistance
URI https://ieeexplore.ieee.org/document/1689597
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anvTioxXf5ODRtHlskt1rxVKFiqCV3so-JiCFVkp68dc7k6SpigdvSdgkO2zY78s8vgG4MUqq3HJGTRYlvpB55OtMcOmTSx0RZo0hVyNPntLxVDzOklkLbptaGEQsk8-wz4dlLN-t7IZdZYMwlYoIcBva9JlVtVqNP4Wl5Eol9moXTohXhFVEmeaRSO7NJ7jMMopkWivvNOfxNn4ZqMHD20sVoqhf9qPrSgk6owOYbKdb5Zos-pvC9O3nLyXH_9pzCL1deZ_33ADXEbRweQz735QJuxCUzn2vVk9ce0MCO0c3cViHN0hvuNYL9GhxmX_SA3swHd2_3o39urmC_06gXfhaJsZm0hjii4T5KFkPFLkfFbeYClGlCmMXSJ0rF6uQcDwLc0HjXUxoZ5P4BDrL1RJPwRMyccTDYvp50yIPrKSVQG2iVFqTWZOfQZdtn39U-hnz2uzzvy9fwN7OzXEJnWK9wSsC_sJclyv-BSYGo8s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLDzC-7cGjhT52290rRgIKxEQw3Ej30cSQgCHl4q93pi1FjQdvbdPHTibZ7-s8vgG4U1LIVFNFTRxwl4k0cJOYUeuTiQwS5sT61I08HEW9CXua8mkN7qteGGttXnxmW3SY5_LNUq8pVNb2IyGRAO_ALuI-40W3VhVRITG5XIu92Ic5Mgu_yCnjSrig6XyMGi2DQESl9k51Hm4ymJ5s999eiyRF-bkfc1dy2OkewnCz4KLaZN5aZ6qlP39pOf7XoiNobhv8nJcKuo6hZhcncPBNm7ABXh7ed0r9xJXTQbgz-BAldmiLdDqrZG4ddC8xUHxhEybdx_FDzy3HK7jvCNuZmwiudCyUQsaIqG8FKYJamkhFQ6Z8KyNpQ-OJJJUmlD4ieeynDO83IeKd5uEp1BfLhT0DhwlukImF-PuWsNTTAj1hExVEQqtYq_QcGmT77KNQ0JiVZl_8ffkW9nrj4WA26I-eL2F_G_S4gnq2WttrpAGZusm9_wX14acY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2006+IEEE+Intelligent+Vehicles+Symposium&rft.atitle=Human+Behavior+Based+Predictive+Brake+Assistance&rft.au=Mccall%2C+J.C.&rft.au=Trivedi%2C+M.M.&rft.date=2006-01-01&rft.pub=IEEE&rft.isbn=9784901122863&rft.issn=1931-0587&rft.spage=8&rft.epage=12&rft_id=info:doi/10.1109%2FIVS.2006.1689597&rft.externalDocID=1689597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-0587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-0587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-0587&client=summon