Fusion of Sensors Data in Automotive Radar Systems: A Spectral Estimation Approach
To accurately estimate locations and velocities of surrounding targets (cars) is crucial for advanced driver assistance systems based on radar sensors. In this paper we derive methods for fusing data from multiple radar sensors in order to improve the accuracy and robustness of such estimates. First...
Saved in:
Published in | Proceedings of the IEEE Conference on Decision & Control pp. 5088 - 5093 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2019
|
Online Access | Get full text |
ISSN | 2576-2370 |
DOI | 10.1109/CDC40024.2019.9029655 |
Cover
Loading…
Abstract | To accurately estimate locations and velocities of surrounding targets (cars) is crucial for advanced driver assistance systems based on radar sensors. In this paper we derive methods for fusing data from multiple radar sensors in order to improve the accuracy and robustness of such estimates. First we pose the target estimation problem as a multivariate multidimensional spectral estimation problem. The problem is multivariate since each radar sensor gives rise to a measurement channel. Then we investigate how the use of the cross-spectra affects target estimates. We see that the use of the magnitude of the cross-spectrum significantly improves the accuracy of the target estimates, whereas an attempt to compensate the phase lag of the cross-spectrum only gives marginal improvement. This paper may be viewed as a first step towards applying high-resolution methods that builds on multidimensional multivariate spectral estimation for sensor fusion. |
---|---|
AbstractList | To accurately estimate locations and velocities of surrounding targets (cars) is crucial for advanced driver assistance systems based on radar sensors. In this paper we derive methods for fusing data from multiple radar sensors in order to improve the accuracy and robustness of such estimates. First we pose the target estimation problem as a multivariate multidimensional spectral estimation problem. The problem is multivariate since each radar sensor gives rise to a measurement channel. Then we investigate how the use of the cross-spectra affects target estimates. We see that the use of the magnitude of the cross-spectrum significantly improves the accuracy of the target estimates, whereas an attempt to compensate the phase lag of the cross-spectrum only gives marginal improvement. This paper may be viewed as a first step towards applying high-resolution methods that builds on multidimensional multivariate spectral estimation for sensor fusion. |
Author | Zhu, Bin Zorzi, Mattia Karlsson, Johan Ferrante, Augusto |
Author_xml | – sequence: 1 givenname: Bin surname: Zhu fullname: Zhu, Bin organization: University of Padova,Department of Information Engineering,Padova,Italy,35131 – sequence: 2 givenname: Augusto surname: Ferrante fullname: Ferrante, Augusto organization: University of Padova,Department of Information Engineering,Padova,Italy,35131 – sequence: 3 givenname: Johan surname: Karlsson fullname: Karlsson, Johan organization: KTH Royal Institute of Technology,Division of Optimization and Systems Theory,Stockholm,Sweden,10044 – sequence: 4 givenname: Mattia surname: Zorzi fullname: Zorzi, Mattia organization: University of Padova,Department of Information Engineering,Padova,Italy,35131 |
BookMark | eNotj9FKwzAUQKMouE6_QIT8QOtN0ia9vpVuU2EgrPo80jbBytqUJBP29yru6bwdzknI1eQmQ8gDg4wxwMd6VecAPM84MMwQOMqiuCAJU7xkTGCJl2TBCyVTLhTckCSELwCBmIsF2W2OYXATdZY2ZgrOB7rSUdNhotUxutHF4dvQne61p80pRDOGJ1rRZjZd9PpA1yEOo45_imqevdPd5y25tvoQzN2ZS_KxWb_XL-n27fm1rrbpwHMWU1RaYtlyK9GCRoVCilKVzLYase94YZkFBdCjtbbvcmV6bqFlQpo251qIJbn_9w7GmP3sfzv8aX_-Fz_MNVGX |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CDC40024.2019.9029655 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1728113989 9781728113982 |
EISSN | 2576-2370 |
EndPage | 5093 |
ExternalDocumentID | 9029655 |
Genre | orig-research |
GroupedDBID | 29P 6IE 6IH 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i241t-97a698b2f69f0a9793638781fba99dc25f1f0700d9fffdc47ed2f0b136eb42a33 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 06:30:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-97a698b2f69f0a9793638781fba99dc25f1f0700d9fffdc47ed2f0b136eb42a33 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9029655 |
PublicationCentury | 2000 |
PublicationDate | 2019-Dec. |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec. |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the IEEE Conference on Decision & Control |
PublicationTitleAbbrev | CDC |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039943 |
Score | 1.8351262 |
Snippet | To accurately estimate locations and velocities of surrounding targets (cars) is crucial for advanced driver assistance systems based on radar sensors. In this... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5088 |
Title | Fusion of Sensors Data in Automotive Radar Systems: A Spectral Estimation Approach |
URI | https://ieeexplore.ieee.org/document/9029655 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEB2SnNpLl6R0R4cea0e2ZdnqLWQhFFJK2kBuQSuEgl1Su4d-fSXbSRd66E0IhI2G0UOj994A3MRMhUZq4WEtqUcUtylFmfIYT4lydQ-NncB59kCnC3K_jJctuN1pYbTWFflM-25YveWrXJauVNZnOGQ0jtvQthe3Wqu1PXUtzpKoUegEmPWHoyFx-OPIW8xvFv7ooFIByOQAZttP17yRF78shC8_frky_vffDqH3JdVDjzsQOoKWzo5h_5vLYBfmk9KVxFBu0JO9tOabNzTiBUfrDA3KomLjvWs054pvUGNgfocGyHWmd2UQNLanQC1wRIPGgbwHi8n4eTj1mlYK3tpCdOGxhFOWitBQZjBnNilt3iVpYARnTMkwNoGxyY8VM8YoSRJtQ4hFEFEtSMij6AQ6WZ7pU0CBSRKLelEqjSQxS1MlYyEDbnEfUx2EZ9B1u7N6rd0yVs3GnP89fQF7LkI1QeQSOsWm1FcW5gtxXcX3EyexqAY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOQAXlhax4wNHktqJ48Tcqi4q0FaotFJvleNFqpASVBIOfD12kpZFHLhZkSxHHs08ZfLeGwBuAiY9LVTsICWoQyQ3KUWZdBiPiLR9D4WswHk0poMZeZgH8xq43WhhlFIF-Uy5dln8y5epyG2rrMWQx2gQbIFtg_sBLtVa67prkJb4lUYHI9bqdDvEIpClbzG32vpjhkoBIf19MFofXjJHXtw8i13x8cuX8b9vdwCaX2I9-LSBoUNQU8kR2PvmM9gAk35um2Iw1fDZfLamqzfY5RmHywS286zg470rOOGSr2BlYX4H29DOpreNENgzdaCUOMJ25UHeBLN-b9oZONUwBWdpQDpzWMgpi2JPU6YRZyYtTeaFEdYxZ0wKL9BYm_RHkmmtpSChMkFEMfapionHff8Y1JM0UScAYh2GBvf8SGhBAhZFUgSxwNwgP6IKe6egYW9n8Vr6ZSyqizn7-_E12BlMR8PF8H78eA52bbRKusgFqGerXF0a0M_iqyLWnxzIq08 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Fusion+of+Sensors+Data+in+Automotive+Radar+Systems%3A+A+Spectral+Estimation+Approach&rft.au=Zhu%2C+Bin&rft.au=Ferrante%2C+Augusto&rft.au=Karlsson%2C+Johan&rft.au=Zorzi%2C+Mattia&rft.date=2019-12-01&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=5088&rft.epage=5093&rft_id=info:doi/10.1109%2FCDC40024.2019.9029655&rft.externalDocID=9029655 |