End-to-End Recovery of Human Shape and Pose
We describe Human Mesh Recovery (HMR), an end-to-end framework for reconstructing a full 3D mesh of a human body from a single RGB image. In contrast to most current methods that compute 2D or 3D joint locations, we produce a richer and more useful mesh representation that is parameterized by shape...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 7122 - 7131 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We describe Human Mesh Recovery (HMR), an end-to-end framework for reconstructing a full 3D mesh of a human body from a single RGB image. In contrast to most current methods that compute 2D or 3D joint locations, we produce a richer and more useful mesh representation that is parameterized by shape and 3D joint angles. The main objective is to minimize the reprojection loss of keypoints, which allows our model to be trained using in-the-wild images that only have ground truth 2D annotations. However, the reprojection loss alone is highly underconstrained. In this work we address this problem by introducing an adversary trained to tell whether human body shape and pose parameters are real or not using a large database of 3D human meshes. We show that HMR can be trained with and without using any paired 2D-to-3D supervision. We do not rely on intermediate 2D keypoint detections and infer 3D pose and shape parameters directly from image pixels. Our model runs in real-time given a bounding box containing the person. We demonstrate our approach on various images in-the-wild and out-perform previous optimization-based methods that output 3D meshes and show competitive results on tasks such as 3D joint location estimation and part segmentation. |
---|---|
AbstractList | We describe Human Mesh Recovery (HMR), an end-to-end framework for reconstructing a full 3D mesh of a human body from a single RGB image. In contrast to most current methods that compute 2D or 3D joint locations, we produce a richer and more useful mesh representation that is parameterized by shape and 3D joint angles. The main objective is to minimize the reprojection loss of keypoints, which allows our model to be trained using in-the-wild images that only have ground truth 2D annotations. However, the reprojection loss alone is highly underconstrained. In this work we address this problem by introducing an adversary trained to tell whether human body shape and pose parameters are real or not using a large database of 3D human meshes. We show that HMR can be trained with and without using any paired 2D-to-3D supervision. We do not rely on intermediate 2D keypoint detections and infer 3D pose and shape parameters directly from image pixels. Our model runs in real-time given a bounding box containing the person. We demonstrate our approach on various images in-the-wild and out-perform previous optimization-based methods that output 3D meshes and show competitive results on tasks such as 3D joint location estimation and part segmentation. |
Author | Jacobs, David W. Malik, Jitendra Black, Michael J. Kanazawa, Angjoo |
Author_xml | – sequence: 1 givenname: Angjoo surname: Kanazawa fullname: Kanazawa, Angjoo – sequence: 2 givenname: Michael J. surname: Black fullname: Black, Michael J. – sequence: 3 givenname: David W. surname: Jacobs fullname: Jacobs, David W. – sequence: 4 givenname: Jitendra surname: Malik fullname: Malik, Jitendra |
BookMark | eNotzEtLw0AUQOFRFKw1axduspdJ78zceS0lVCsUWupjW24mNxixSUmq0H9vQVff4sC5Fhdd37EQtwoKpSDOyvf1ptCgQgHgEc9EFn1Q1gTnUEM8FxMFzkgXVbwS2Th-AoB2wQS0E3E_72p56OWJfMOp_-HhmPdNvvjeUZe_fNCeczq1dT_yjbhs6Gvk7N-peHucv5YLuVw9PZcPS9lqVAcZnbeeoqtrZ3RAIs-IibCimm1iVmwSh6ph5RNWQGhtstrEhpyznqOZiru_b8vM2_3Q7mg4boP1IaA2v3E7Q0M |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00744 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 7131 |
ExternalDocumentID | 8578842 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i241t-96757a96dd63284aa7e44ca4bade5cee1e3ce8bfe17c4b0a455c5239fa6657e93 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-96757a96dd63284aa7e44ca4bade5cee1e3ce8bfe17c4b0a455c5239fa6657e93 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578842 |
PublicationCentury | 2000 |
PublicationDate | 2018-06 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06 |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.6224551 |
Snippet | We describe Human Mesh Recovery (HMR), an end-to-end framework for reconstructing a full 3D mesh of a human body from a single RGB image. In contrast to most... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7122 |
SubjectTerms | Biological system modeling Estimation Joints Shape Solid modeling Three-dimensional displays Two dimensional displays |
Title | End-to-End Recovery of Human Shape and Pose |
URI | https://ieeexplore.ieee.org/document/8578842 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD2zgNq4dx5mrVhVSUQUUdav8uAiElCCaDvDrOSehCMTAZCdezomTu-_uuztCLh0PRcq0Ymi8WyazGJix2jOLCEgpyyGrekbObtV0IW-W8bJFrre5MABQkc-gH6ZVLN8XbhNcZQONx0tL_OHu4Fjnam39KUOlhW4iZOFaILJRqW6q-fAoHYwe53eByxXIk4mUP9qpVNpk0iGzLzlqEslLf1Pavvv4VaLxv4Lukd533h6dbzXSPmlBfkA6jaFJm8943SVX49yzsmA40IA_8Ti_0yKjlUef3j-ZV6AG1-bFGnpkMRk_jKas6ZrAnlEblyxFCJCYVHmvBOoeYxKQ0hlpjYcYBeAgHGibAU-ctJGRcewQjaaZCUEYSMUhaedFDkeEoiknOLcGoshKL006VFmsMiW5d1oId0y6Ye-r17owxqrZ9snft0_Jbnj6Nc_qjLTLtw2co0Yv7UX1Kj8BpzOdnQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-IHvSECsZvd_CmhZV2XXcmEFQgRMFwI233Fo3JRmQc9K_3dZsYjQdP--jldW33e7_3SciVZa5ImZIUlXdDRRIA1UbF1CADktIwSIqekaOxHMzE3TyY18jNJhcGAIrgM2i528KXH2d27UxlbYXbSwn84W4j7geszNbaWFQ6UnFV-cjcM0duIyNV1fNhftTuPk0eXDSXC58MhfjRUKXAk36djL4kKcNIXlvr3LTsx68ijf8VdY80vzP3vMkGk_ZJDdIDUq9UTa86yKsGue6lMc0zihfPMVDc0O9elniFTd97fNZL8DSOTbIVNMms35t2B7Tqm0BfEI9zGiEJCHUk41hyRB-tQxDCamF0DAEKwIBbUCYBFlphfI3f0iIfjRLt3DAQ8UOylWYpHBEPlTnOmNHg-0bEQkcdmQQykYLFVnFuj0nDzX2xLEtjLKppn_z9-pLsDKaj4WJ4O74_JbtuJcqoqzOylb-t4RzxPTcXxbJ-AhY_oOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=End-to-End+Recovery+of+Human+Shape+and+Pose&rft.au=Kanazawa%2C+Angjoo&rft.au=Black%2C+Michael+J.&rft.au=Jacobs%2C+David+W.&rft.au=Malik%2C+Jitendra&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7122&rft.epage=7131&rft_id=info:doi/10.1109%2FCVPR.2018.00744&rft.externalDocID=8578842 |