Deepdocclassifier: Document classification with deep Convolutional Neural Network

This paper presents a deep Convolutional Neural Network (CNN) based approach for document image classification. One of the main requirement of deep CNN architecture is that they need huge number of samples for training. To overcome this problem we adopt a deep CNN which is trained using big image da...

Full description

Saved in:
Bibliographic Details
Published in2015 13th International Conference on Document Analysis and Recognition (ICDAR) pp. 1111 - 1115
Main Authors Afzal, Muhammad Zeshan, Capobianco, Samuele, Malik, Muhammad Imran, Marinai, Simone, Breuel, Thomas M., Dengel, Andreas, Liwicki, Marcus
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a deep Convolutional Neural Network (CNN) based approach for document image classification. One of the main requirement of deep CNN architecture is that they need huge number of samples for training. To overcome this problem we adopt a deep CNN which is trained using big image dataset containing millions of samples i.e., ImageNet. The proposed work outperforms both the traditional structure similarity methods and the CNN based approaches proposed earlier. The accuracy of the proposed approach with merely 20 images per class outperforms the state-of-the-art by achieving classification accuracy of 68.25%. The best results on Tobbacoo-3428 dataset show that our proposed method outperforms the state-of-the-art method by a significant margin and achieved a median accuracy of 77.6% with 100 samples per class used for training and validation.
AbstractList This paper presents a deep Convolutional Neural Network (CNN) based approach for document image classification. One of the main requirement of deep CNN architecture is that they need huge number of samples for training. To overcome this problem we adopt a deep CNN which is trained using big image dataset containing millions of samples i.e., ImageNet. The proposed work outperforms both the traditional structure similarity methods and the CNN based approaches proposed earlier. The accuracy of the proposed approach with merely 20 images per class outperforms the state-of-the-art by achieving classification accuracy of 68.25%. The best results on Tobbacoo-3428 dataset show that our proposed method outperforms the state-of-the-art method by a significant margin and achieved a median accuracy of 77.6% with 100 samples per class used for training and validation.
Author Capobianco, Samuele
Liwicki, Marcus
Dengel, Andreas
Afzal, Muhammad Zeshan
Malik, Muhammad Imran
Marinai, Simone
Breuel, Thomas M.
Author_xml – sequence: 1
  givenname: Muhammad Zeshan
  surname: Afzal
  fullname: Afzal, Muhammad Zeshan
  email: afzal@iupr.com
  organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany
– sequence: 2
  givenname: Samuele
  surname: Capobianco
  fullname: Capobianco, Samuele
  email: samuele.capobianco@stud.unifi.it
  organization: Dipt. di Ing. dell'Inf., Univ. di Firenze, Florence, Italy
– sequence: 3
  givenname: Muhammad Imran
  surname: Malik
  fullname: Malik, Muhammad Imran
  organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany
– sequence: 4
  givenname: Simone
  surname: Marinai
  fullname: Marinai, Simone
  email: simone.marinai@unifi.it
  organization: Dipt. di Ing. dell'Inf., Univ. di Firenze, Florence, Italy
– sequence: 5
  givenname: Thomas M.
  surname: Breuel
  fullname: Breuel, Thomas M.
  email: tmb@iupr.com
  organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany
– sequence: 6
  givenname: Andreas
  surname: Dengel
  fullname: Dengel, Andreas
  organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany
– sequence: 7
  givenname: Marcus
  surname: Liwicki
  fullname: Liwicki, Marcus
  email: marcus.eichenberger-liwicki@unifr.ch
  organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany
BookMark eNo1j81KAzEUhSMoaGtfQDd5gRlzcxMmcVdmtBZKi6LrkmQSDE4nZX4svr1V6-qD7xwOnAk5b1PrCbkBlgMwfbcsq_lLzhnIvEBEjXhGJiAKrUExqS_JrO-jZciYVgr0FXmuvN_XybnGHJMQfXdPq-TGnW8H-i-dGWJq6SEO77Q-9mmZ2s_UjD_WNHTtx-4XwyF1H9fkIpim97MTp-Tt8eG1fMpWm8WynK-yyAUMmXICrQ1cga0VN0EY7gp0wBzU6FBKCNYay4PlPAjBudKgUUtToORSMJyS27_d6L3f7ru4M93X9vQavwGzflCf
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDAR.2015.7333933
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479918059
9781479918058
EndPage 1115
ExternalDocumentID 7333933
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i241t-8c43bbf281bd82af4a2c73c10c1d3c3551fbbab2fb22f44228919395a73525403
IEDL.DBID RIE
IngestDate Wed Dec 20 05:19:04 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-8c43bbf281bd82af4a2c73c10c1d3c3551fbbab2fb22f44228919395a73525403
PageCount 5
ParticipantIDs ieee_primary_7333933
PublicationCentury 2000
PublicationDate 20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 20150801
  day: 01
PublicationDecade 2010
PublicationTitle 2015 13th International Conference on Document Analysis and Recognition (ICDAR)
PublicationTitleAbbrev ICDAR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030098819
Score 1.9859247
Snippet This paper presents a deep Convolutional Neural Network (CNN) based approach for document image classification. One of the main requirement of deep CNN...
SourceID ieee
SourceType Publisher
StartPage 1111
SubjectTerms Convolutional codes
Convolutional Neural Network
Deep CNN
Document Image Classification
Electronic mail
Marine vehicles
Title Deepdocclassifier: Document classification with deep Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/7333933
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_Bo0mR3Y7repLVUoaJiobeyH7NQlLZI4sFf7-wmqSgePCUs2UnY2fAmk3lvCLnAb2STskRH1oks8lzGSBthIsVyK5V0iQ1dFKYPV5OZuJ9n8xa53HJhACAUn0HsT8O_fLs2pU-V9XPOORpvk3YuZcXVavYO98KYiG4NLyaR_bvh6ObZF29lcT3xRweVACDjXTJtbl3VjbzGZaFj8_lLlfG_z7ZHet9UPfq4BaF90oJVlzyNADY4x_jQeOkQ-a7pqDZBm8EqV0d9IpZavJ6ixY96I6o36lU7wiGUiffIbHz7MpxEde-EaImYXEQDI7jWjmFUagdMOaGYydEtiUktNxhkpE5rpZnTjDnhdcAkhnIyU7nXRxUJPyCd1XoFh4QaDQnkUnOwXh4QX2DjFKSQcRioDMQR6frlWGwqeYxFvRLHfw-fkB3vkqqG7pR0ivcSzhDXC30eHPoFE_qkzQ
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSkBoxv9-DRlnZ3a1tvBiSgQNRAwo3sYzYhGiCmePDXu9sHRuPBU5tNd9rsbPNNp998A3Blv5FVSAPpacMjz9UyelJx5Qka61SkJtB5F4Xh6KY34Q_TaFqD600tDCLm5DP03Wn-L18v1dqlyloxY8wa34LtyMUVRbVWtXuYk8a0-FZVxgRpq9_u3L04-lbkl1N_9FDJIaS7B8Pq5gVz5NVfZ9JXn790Gf_7dPvQ_C7WI08bGDqAGi4a8NxBXNk5ygXHc2Ox75Z0ShOkGiyydcSlYom21xNr8aPciuKNON2O_JATxZsw6d6P2z2v7J7gzS0qZ16iOJPSUBuX6oQKwwVVsXVMoELNlA0zQiOlkNRISg13SmCpDebSSMROIZUH7BDqi-UCj4AoiQHGqWSonUCgfYWVERhixDAREfJjaLjlmK0KgYxZuRInfw9fwk5vPBzMBv3R4ynsOvcUjLozqGfvazy3KJ_Ji9y5X-NWqBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+13th+International+Conference+on+Document+Analysis+and+Recognition+%28ICDAR%29&rft.atitle=Deepdocclassifier%3A+Document+classification+with+deep+Convolutional+Neural+Network&rft.au=Afzal%2C+Muhammad+Zeshan&rft.au=Capobianco%2C+Samuele&rft.au=Malik%2C+Muhammad+Imran&rft.au=Marinai%2C+Simone&rft.date=2015-08-01&rft.pub=IEEE&rft.spage=1111&rft.epage=1115&rft_id=info:doi/10.1109%2FICDAR.2015.7333933&rft.externalDocID=7333933