Deepdocclassifier: Document classification with deep Convolutional Neural Network
This paper presents a deep Convolutional Neural Network (CNN) based approach for document image classification. One of the main requirement of deep CNN architecture is that they need huge number of samples for training. To overcome this problem we adopt a deep CNN which is trained using big image da...
Saved in:
Published in | 2015 13th International Conference on Document Analysis and Recognition (ICDAR) pp. 1111 - 1115 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a deep Convolutional Neural Network (CNN) based approach for document image classification. One of the main requirement of deep CNN architecture is that they need huge number of samples for training. To overcome this problem we adopt a deep CNN which is trained using big image dataset containing millions of samples i.e., ImageNet. The proposed work outperforms both the traditional structure similarity methods and the CNN based approaches proposed earlier. The accuracy of the proposed approach with merely 20 images per class outperforms the state-of-the-art by achieving classification accuracy of 68.25%. The best results on Tobbacoo-3428 dataset show that our proposed method outperforms the state-of-the-art method by a significant margin and achieved a median accuracy of 77.6% with 100 samples per class used for training and validation. |
---|---|
AbstractList | This paper presents a deep Convolutional Neural Network (CNN) based approach for document image classification. One of the main requirement of deep CNN architecture is that they need huge number of samples for training. To overcome this problem we adopt a deep CNN which is trained using big image dataset containing millions of samples i.e., ImageNet. The proposed work outperforms both the traditional structure similarity methods and the CNN based approaches proposed earlier. The accuracy of the proposed approach with merely 20 images per class outperforms the state-of-the-art by achieving classification accuracy of 68.25%. The best results on Tobbacoo-3428 dataset show that our proposed method outperforms the state-of-the-art method by a significant margin and achieved a median accuracy of 77.6% with 100 samples per class used for training and validation. |
Author | Capobianco, Samuele Liwicki, Marcus Dengel, Andreas Afzal, Muhammad Zeshan Malik, Muhammad Imran Marinai, Simone Breuel, Thomas M. |
Author_xml | – sequence: 1 givenname: Muhammad Zeshan surname: Afzal fullname: Afzal, Muhammad Zeshan email: afzal@iupr.com organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany – sequence: 2 givenname: Samuele surname: Capobianco fullname: Capobianco, Samuele email: samuele.capobianco@stud.unifi.it organization: Dipt. di Ing. dell'Inf., Univ. di Firenze, Florence, Italy – sequence: 3 givenname: Muhammad Imran surname: Malik fullname: Malik, Muhammad Imran organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany – sequence: 4 givenname: Simone surname: Marinai fullname: Marinai, Simone email: simone.marinai@unifi.it organization: Dipt. di Ing. dell'Inf., Univ. di Firenze, Florence, Italy – sequence: 5 givenname: Thomas M. surname: Breuel fullname: Breuel, Thomas M. email: tmb@iupr.com organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany – sequence: 6 givenname: Andreas surname: Dengel fullname: Dengel, Andreas organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany – sequence: 7 givenname: Marcus surname: Liwicki fullname: Liwicki, Marcus email: marcus.eichenberger-liwicki@unifr.ch organization: Kaiserslautern Univ. of Technol., Kaiserslautern, Germany |
BookMark | eNo1j81KAzEUhSMoaGtfQDd5gRlzcxMmcVdmtBZKi6LrkmQSDE4nZX4svr1V6-qD7xwOnAk5b1PrCbkBlgMwfbcsq_lLzhnIvEBEjXhGJiAKrUExqS_JrO-jZciYVgr0FXmuvN_XybnGHJMQfXdPq-TGnW8H-i-dGWJq6SEO77Q-9mmZ2s_UjD_WNHTtx-4XwyF1H9fkIpim97MTp-Tt8eG1fMpWm8WynK-yyAUMmXICrQ1cga0VN0EY7gp0wBzU6FBKCNYay4PlPAjBudKgUUtToORSMJyS27_d6L3f7ru4M93X9vQavwGzflCf |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICDAR.2015.7333933 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1479918059 9781479918058 |
EndPage | 1115 |
ExternalDocumentID | 7333933 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i241t-8c43bbf281bd82af4a2c73c10c1d3c3551fbbab2fb22f44228919395a73525403 |
IEDL.DBID | RIE |
IngestDate | Wed Dec 20 05:19:04 EST 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-8c43bbf281bd82af4a2c73c10c1d3c3551fbbab2fb22f44228919395a73525403 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7333933 |
PublicationCentury | 2000 |
PublicationDate | 20150801 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 20150801 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 13th International Conference on Document Analysis and Recognition (ICDAR) |
PublicationTitleAbbrev | ICDAR |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib030098819 |
Score | 1.9859247 |
Snippet | This paper presents a deep Convolutional Neural Network (CNN) based approach for document image classification. One of the main requirement of deep CNN... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1111 |
SubjectTerms | Convolutional codes Convolutional Neural Network Deep CNN Document Image Classification Electronic mail Marine vehicles |
Title | Deepdocclassifier: Document classification with deep Convolutional Neural Network |
URI | https://ieeexplore.ieee.org/document/7333933 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_Bo0mR3Y7repLVUoaJiobeyH7NQlLZI4sFf7-wmqSgePCUs2UnY2fAmk3lvCLnAb2STskRH1oks8lzGSBthIsVyK5V0iQ1dFKYPV5OZuJ9n8xa53HJhACAUn0HsT8O_fLs2pU-V9XPOORpvk3YuZcXVavYO98KYiG4NLyaR_bvh6ObZF29lcT3xRweVACDjXTJtbl3VjbzGZaFj8_lLlfG_z7ZHet9UPfq4BaF90oJVlzyNADY4x_jQeOkQ-a7pqDZBm8EqV0d9IpZavJ6ixY96I6o36lU7wiGUiffIbHz7MpxEde-EaImYXEQDI7jWjmFUagdMOaGYydEtiUktNxhkpE5rpZnTjDnhdcAkhnIyU7nXRxUJPyCd1XoFh4QaDQnkUnOwXh4QX2DjFKSQcRioDMQR6frlWGwqeYxFvRLHfw-fkB3vkqqG7pR0ivcSzhDXC30eHPoFE_qkzQ |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSkBoxv9-DRlnZ3a1tvBiSgQNRAwo3sYzYhGiCmePDXu9sHRuPBU5tNd9rsbPNNp998A3Blv5FVSAPpacMjz9UyelJx5Qka61SkJtB5F4Xh6KY34Q_TaFqD600tDCLm5DP03Wn-L18v1dqlyloxY8wa34LtyMUVRbVWtXuYk8a0-FZVxgRpq9_u3L04-lbkl1N_9FDJIaS7B8Pq5gVz5NVfZ9JXn790Gf_7dPvQ_C7WI08bGDqAGi4a8NxBXNk5ygXHc2Ox75Z0ShOkGiyydcSlYom21xNr8aPciuKNON2O_JATxZsw6d6P2z2v7J7gzS0qZ16iOJPSUBuX6oQKwwVVsXVMoELNlA0zQiOlkNRISg13SmCpDebSSMROIZUH7BDqi-UCj4AoiQHGqWSonUCgfYWVERhixDAREfJjaLjlmK0KgYxZuRInfw9fwk5vPBzMBv3R4ynsOvcUjLozqGfvazy3KJ_Ji9y5X-NWqBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+13th+International+Conference+on+Document+Analysis+and+Recognition+%28ICDAR%29&rft.atitle=Deepdocclassifier%3A+Document+classification+with+deep+Convolutional+Neural+Network&rft.au=Afzal%2C+Muhammad+Zeshan&rft.au=Capobianco%2C+Samuele&rft.au=Malik%2C+Muhammad+Imran&rft.au=Marinai%2C+Simone&rft.date=2015-08-01&rft.pub=IEEE&rft.spage=1111&rft.epage=1115&rft_id=info:doi/10.1109%2FICDAR.2015.7333933&rft.externalDocID=7333933 |