Few-Shot Image Recognition by Predicting Parameters from Activations

In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, e.g. 1, 2, or 3. Motivated by the close relationship between the parameters and...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 7229 - 7238
Main Authors Qiao, Siyuan, Liu, Chenxi, Shen, Wei, Yuille, Alan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00755

Cover

Loading…
Abstract In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, e.g. 1, 2, or 3. Motivated by the close relationship between the parameters and the activations in a neural network associated with the same category, we propose a novel method that can adapt a pre-trained neural network to novel categories by directly predicting the parameters from the activations. Zero training is required in adaptation to novel categories, and fast inference is realized by a single forward pass. We evaluate our method by doing few-shot image recognition on the ImageNet dataset, which achieves the state-of-the-art classification accuracy on novel categories by a significant margin while keeping comparable performance on the large-scale categories. We also test our method on the MiniImageNet dataset and it strongly outperforms the previous state-of-the-art methods.
AbstractList In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, e.g. 1, 2, or 3. Motivated by the close relationship between the parameters and the activations in a neural network associated with the same category, we propose a novel method that can adapt a pre-trained neural network to novel categories by directly predicting the parameters from the activations. Zero training is required in adaptation to novel categories, and fast inference is realized by a single forward pass. We evaluate our method by doing few-shot image recognition on the ImageNet dataset, which achieves the state-of-the-art classification accuracy on novel categories by a significant margin while keeping comparable performance on the large-scale categories. We also test our method on the MiniImageNet dataset and it strongly outperforms the previous state-of-the-art methods.
Author Qiao, Siyuan
Shen, Wei
Yuille, Alan
Liu, Chenxi
Author_xml – sequence: 1
  givenname: Siyuan
  surname: Qiao
  fullname: Qiao, Siyuan
– sequence: 2
  givenname: Chenxi
  surname: Liu
  fullname: Liu, Chenxi
– sequence: 3
  givenname: Wei
  surname: Shen
  fullname: Shen, Wei
– sequence: 4
  givenname: Alan
  surname: Yuille
  fullname: Yuille, Alan
BookMark eNotjMtKw0AUQEdRsNasXbiZH0i988zMslSrhYKhPrZlHnfiiEkkCUr_XkVXBw6Hc05Our5DQi4ZLBgDe716qXcLDswsACqljkhhK8OUMFpLDvaYzBhoUWrL7BkpxvENALg2wkg1Izdr_CofX_uJblrXIN1h6JsuT7nvqD_QesCYw5S7htZucC1OOIw0DX1Llz_60_2G4wU5Te59xOKfc_K8vn1a3Zfbh7vNarktM5dsKk1gTCT00itIwHQCr6S3lgXUkRsfRQSfpIiWR5cwasadDypU0gQdgxJzcvX3zYi4_xhy64bD3qjKGCXEN33FTf4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00755
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 7238
ExternalDocumentID 8578853
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-8c113feb4b50f016f0b54b991ce6d28bd3d0bf43d92dafed612abc5c748c6dc53
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-8c113feb4b50f016f0b54b991ce6d28bd3d0bf43d92dafed612abc5c748c6dc53
PageCount 10
ParticipantIDs ieee_primary_8578853
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5480695
Snippet In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large...
SourceID ieee
SourceType Publisher
StartPage 7229
SubjectTerms Computer vision
Linearity
Neural networks
Training
Training data
Visualization
Title Few-Shot Image Recognition by Predicting Parameters from Activations
URI https://ieeexplore.ieee.org/document/8578853
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxm8SO64yoUAESqCoUdav8uAiESBBNheDXc07SghADUx5DZNnOfXe-77sj5ESj1VPaALMmEEwgZLBEgGWxtTaUOuVKlyzfW3k5FdezeNYgp2stDACU5DPo-dsyl-9yu_RHZX2F2wvhpUmaeK20WuvzlEgqruoMmX_mGNnIRNXVfMIg6Q8fxhPP5fLkyYGX9v1op1KiyahNblbjqEgkz71lYXr281eJxv8OdJN0v3V7dLxGpC3SgGybtGtHk9a_8aJDzkfwzu4e84JevaA9oZMViyjPqPnAT_jsjedD07H25C1fgZN6IQo9s6t2aIsumY4u7oeXrG6nwJ4QpgumbBjyFIwwcZCip5cGJhYG_UML0kXKOO4CkwruksjpFBz6PtrY2A6EstLZmO-QVpZnsEsoDyGyEgI0TlpI7RIjMY7B4CdVziU63SMdPynz16pixryej_2_Xx-QDb8sFQHrkLSKtyUcIdQX5rhc4y82QKkq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DoYKNd6Y4GJaBACILhRvozGuNmZMToX-_rNtAYD966Hpam3d73Xt_3vYfQhQCrx4U0npI-9ShAhhdRo7xQKRUwYQkXGct3yLpTejsLZyV0udbCGGMy8pmpu2GWy9eJWrqrsgaHzwvgZQNtAu6HQa7WWt-oNBknvMiRuWcCsQ2LeFHPJ_CjRvthNHZsLkefbDlx34-GKhmedCposFpJTiN5ri9TWVefv4o0_nepO6j2rdzDozUm7aKSifdQpXA1cfEjL6roumPevfvHJMW9F7AoeLziESUxlh_wCpe_cYxoPBKOvuVqcGInRcFXatUQbVFD087NpN31ioYK3hMAdepxFQTEGkll6Fvw9awvQyrBQ1SG6SaXmmhfWkp01NTCGg3ej5AqVC3KFdMqJPuoHCexOUCYBKapmPHBPAnKhI4kg0gGwh_LtY6EPURVtynz17xmxrzYj6O_p8_RVncy6M_7veHdMdp2R5TTsU5QOX1bmlMA_lSeZef9BTpBrHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Few-Shot+Image+Recognition+by+Predicting+Parameters+from+Activations&rft.au=Qiao%2C+Siyuan&rft.au=Liu%2C+Chenxi&rft.au=Shen%2C+Wei&rft.au=Yuille%2C+Alan&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7229&rft.epage=7238&rft_id=info:doi/10.1109%2FCVPR.2018.00755&rft.externalDocID=8578853