Few-Shot Image Recognition by Predicting Parameters from Activations
In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, e.g. 1, 2, or 3. Motivated by the close relationship between the parameters and...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 7229 - 7238 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2018.00755 |
Cover
Loading…
Abstract | In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, e.g. 1, 2, or 3. Motivated by the close relationship between the parameters and the activations in a neural network associated with the same category, we propose a novel method that can adapt a pre-trained neural network to novel categories by directly predicting the parameters from the activations. Zero training is required in adaptation to novel categories, and fast inference is realized by a single forward pass. We evaluate our method by doing few-shot image recognition on the ImageNet dataset, which achieves the state-of-the-art classification accuracy on novel categories by a significant margin while keeping comparable performance on the large-scale categories. We also test our method on the MiniImageNet dataset and it strongly outperforms the previous state-of-the-art methods. |
---|---|
AbstractList | In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, e.g. 1, 2, or 3. Motivated by the close relationship between the parameters and the activations in a neural network associated with the same category, we propose a novel method that can adapt a pre-trained neural network to novel categories by directly predicting the parameters from the activations. Zero training is required in adaptation to novel categories, and fast inference is realized by a single forward pass. We evaluate our method by doing few-shot image recognition on the ImageNet dataset, which achieves the state-of-the-art classification accuracy on novel categories by a significant margin while keeping comparable performance on the large-scale categories. We also test our method on the MiniImageNet dataset and it strongly outperforms the previous state-of-the-art methods. |
Author | Qiao, Siyuan Shen, Wei Yuille, Alan Liu, Chenxi |
Author_xml | – sequence: 1 givenname: Siyuan surname: Qiao fullname: Qiao, Siyuan – sequence: 2 givenname: Chenxi surname: Liu fullname: Liu, Chenxi – sequence: 3 givenname: Wei surname: Shen fullname: Shen, Wei – sequence: 4 givenname: Alan surname: Yuille fullname: Yuille, Alan |
BookMark | eNotjMtKw0AUQEdRsNasXbiZH0i988zMslSrhYKhPrZlHnfiiEkkCUr_XkVXBw6Hc05Our5DQi4ZLBgDe716qXcLDswsACqljkhhK8OUMFpLDvaYzBhoUWrL7BkpxvENALg2wkg1Izdr_CofX_uJblrXIN1h6JsuT7nvqD_QesCYw5S7htZucC1OOIw0DX1Llz_60_2G4wU5Te59xOKfc_K8vn1a3Zfbh7vNarktM5dsKk1gTCT00itIwHQCr6S3lgXUkRsfRQSfpIiWR5cwasadDypU0gQdgxJzcvX3zYi4_xhy64bD3qjKGCXEN33FTf4 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00755 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 7238 |
ExternalDocumentID | 8578853 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i241t-8c113feb4b50f016f0b54b991ce6d28bd3d0bf43d92dafed612abc5c748c6dc53 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-8c113feb4b50f016f0b54b991ce6d28bd3d0bf43d92dafed612abc5c748c6dc53 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578853 |
PublicationCentury | 2000 |
PublicationDate | 2018-06 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06 |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5480695 |
Snippet | In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7229 |
SubjectTerms | Computer vision Linearity Neural networks Training Training data Visualization |
Title | Few-Shot Image Recognition by Predicting Parameters from Activations |
URI | https://ieeexplore.ieee.org/document/8578853 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxm8SO64yoUAESqCoUdav8uAiESBBNheDXc07SghADUx5DZNnOfXe-77sj5ESj1VPaALMmEEwgZLBEgGWxtTaUOuVKlyzfW3k5FdezeNYgp2stDACU5DPo-dsyl-9yu_RHZX2F2wvhpUmaeK20WuvzlEgqruoMmX_mGNnIRNXVfMIg6Q8fxhPP5fLkyYGX9v1op1KiyahNblbjqEgkz71lYXr281eJxv8OdJN0v3V7dLxGpC3SgGybtGtHk9a_8aJDzkfwzu4e84JevaA9oZMViyjPqPnAT_jsjedD07H25C1fgZN6IQo9s6t2aIsumY4u7oeXrG6nwJ4QpgumbBjyFIwwcZCip5cGJhYG_UML0kXKOO4CkwruksjpFBz6PtrY2A6EstLZmO-QVpZnsEsoDyGyEgI0TlpI7RIjMY7B4CdVziU63SMdPynz16pixryej_2_Xx-QDb8sFQHrkLSKtyUcIdQX5rhc4y82QKkq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DoYKNd6Y4GJaBACILhRvozGuNmZMToX-_rNtAYD966Hpam3d73Xt_3vYfQhQCrx4U0npI-9ShAhhdRo7xQKRUwYQkXGct3yLpTejsLZyV0udbCGGMy8pmpu2GWy9eJWrqrsgaHzwvgZQNtAu6HQa7WWt-oNBknvMiRuWcCsQ2LeFHPJ_CjRvthNHZsLkefbDlx34-GKhmedCposFpJTiN5ri9TWVefv4o0_nepO6j2rdzDozUm7aKSifdQpXA1cfEjL6roumPevfvHJMW9F7AoeLziESUxlh_wCpe_cYxoPBKOvuVqcGInRcFXatUQbVFD087NpN31ioYK3hMAdepxFQTEGkll6Fvw9awvQyrBQ1SG6SaXmmhfWkp01NTCGg3ej5AqVC3KFdMqJPuoHCexOUCYBKapmPHBPAnKhI4kg0gGwh_LtY6EPURVtynz17xmxrzYj6O_p8_RVncy6M_7veHdMdp2R5TTsU5QOX1bmlMA_lSeZef9BTpBrHM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Few-Shot+Image+Recognition+by+Predicting+Parameters+from+Activations&rft.au=Qiao%2C+Siyuan&rft.au=Liu%2C+Chenxi&rft.au=Shen%2C+Wei&rft.au=Yuille%2C+Alan&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7229&rft.epage=7238&rft_id=info:doi/10.1109%2FCVPR.2018.00755&rft.externalDocID=8578853 |