Hierarchical Gaussian Descriptor for Person Re-identification

Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a novel descriptor based on a hierarchical distribution of pixel features. A hierarchical covariance descriptor has been successfully applied for...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1363 - 1372
Main Authors Matsukawa, Tetsu, Okabe, Takahiro, Suzuki, Einoshin, Sato, Yoichi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2016.152

Cover

Loading…
Abstract Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a novel descriptor based on a hierarchical distribution of pixel features. A hierarchical covariance descriptor has been successfully applied for image classification. However, the mean information of pixel features, which is absent in covariance, tends to be major discriminative information of person images. To solve this problem, we describe a local region in an image via hierarchical Gaussian distribution in which both means and covariances are included in their parameters. More specifically, we model the region as a set of multiple Gaussian distributions in which each Gaussian represents the appearance of a local patch. The characteristics of the set of Gaussians are again described by another Gaussian distribution. In both steps, unlike the hierarchical covariance descriptor, the proposed descriptor can model both the mean and the covariance information of pixel features properly. The results of experiments conducted on five databases indicate that the proposed descriptor exhibits remarkably high performance which outperforms the state-of-the-art descriptors for person re-identification.
AbstractList Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a novel descriptor based on a hierarchical distribution of pixel features. A hierarchical covariance descriptor has been successfully applied for image classification. However, the mean information of pixel features, which is absent in covariance, tends to be major discriminative information of person images. To solve this problem, we describe a local region in an image via hierarchical Gaussian distribution in which both means and covariances are included in their parameters. More specifically, we model the region as a set of multiple Gaussian distributions in which each Gaussian represents the appearance of a local patch. The characteristics of the set of Gaussians are again described by another Gaussian distribution. In both steps, unlike the hierarchical covariance descriptor, the proposed descriptor can model both the mean and the covariance information of pixel features properly. The results of experiments conducted on five databases indicate that the proposed descriptor exhibits remarkably high performance which outperforms the state-of-the-art descriptors for person re-identification.
Author Matsukawa, Tetsu
Okabe, Takahiro
Suzuki, Einoshin
Sato, Yoichi
Author_xml – sequence: 1
  givenname: Tetsu
  surname: Matsukawa
  fullname: Matsukawa, Tetsu
  email: matsukawa@kyushu-u.ac.jp
– sequence: 2
  givenname: Takahiro
  surname: Okabe
  fullname: Okabe, Takahiro
  email: okabe@ai.kyutech.ac.jp
– sequence: 3
  givenname: Einoshin
  surname: Suzuki
  fullname: Suzuki, Einoshin
  email: suzuki@kyushu-u.ac.jp
– sequence: 4
  givenname: Yoichi
  surname: Sato
  fullname: Sato, Yoichi
  email: ysato@iis.u-tokyo.ac.jp
BookMark eNotjk1LxDAURaMoOI5dunLTP5Cal7T5WLiQqjPCgMOgboeX9hUjYzokdeG_t6CLy4XD5XAv2VkcIzF2DaICEO62fd_uKilAV9DIE1Y4Y6HWRlnbAJyyBQituHbgLliR86cQApy2YN2C3a0DJUzdR-jwUK7wO-eAsXyg3KVwnMZUDnO2lPIYyx3x0FOcwjCvpzDGK3Y-4CFT8d9L9vb0-Nqu-eZl9dzeb3iQNUzcYtc3svYGUfdikN4YU6NBIhiUtApRze9ANRrRW0Q3Y9LWAhnthfdqyW7-vIGI9scUvjD97I2xopGgfgHSdkq2
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.152
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 1372
ExternalDocumentID 7780521
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-8acd524b7aa6d0f2b7774a7aee1f3283aa36911356aab8aa91f3e6881e76b0bb3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:54:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-8acd524b7aa6d0f2b7774a7aee1f3283aa36911356aab8aa91f3e6881e76b0bb3
PageCount 10
ParticipantIDs ieee_primary_7780521
PublicationCentury 2000
PublicationDate 2016-06
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.5428257
Snippet Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a...
SourceID ieee
SourceType Publisher
StartPage 1363
SubjectTerms Covariance matrices
Feature extraction
Gaussian distribution
Histograms
Image color analysis
Measurement
Robustness
Title Hierarchical Gaussian Descriptor for Person Re-identification
URI https://ieeexplore.ieee.org/document/7780521
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2nTgN2BBv5cCR7NU2aQ-cJsaENDRNDO02Oa0rTaANbe2FX4-Tdp1AHLglPlRRrNqfHdsfwF3a0zTAIJBp6JP0UzTS6CiVihQ7-36sjUtdTF7UeO4_L4JFDe6rXhgicsVn1LFL95afbOLcpsq6uhjAX4c6B25Fr9YhnxIp9j1Rtfc4slFR9aIwsGwshxmb3eHbdGYLu5QlAPrBrOIcy6gJk_2RinqS906emU789Wta43_PfAztQwufmFbO6QRqtD6FZok5RflH71i0p3XYy1rwMF7ZrmRHkvIhnjDf2UZLwRGqszCbrWCgK6YOqosZyVVSVhw5JbdhPnp8HY5lybIgV-y9MxlinAQD32hElfTSgdGMCFEjUT_1GHwgeootohcoRBMiRiwmFYZ90sr0jPHOoLHerOkcRBinASLFmr_mc2CHScBoLErYRvieZ_ACWvaClp_FII1leTeXf4uv4MgqqKjLuoZGts3phhFAZm6d6r8BHm-uqA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_BogbG13Q6eiDgVCCFguJHXrUuIBgxsF_96X7sxovHgbXuHpWm7932vfe99hNwlbak7wDlLfE8zLwHFlAwSJrRAsHciqezRxWAowqn3MuOzCrkva2G01jb5TDfNo73Lj1dRZo7KWjJvwL9H9hH3uZNXa-1OVAKB6BOU7y7GNiIo7xQ6Ro9l12Wz1X0bjU1qlzASQD-0VSy09GpksB1UnlHy3sxS1Yy-fvVr_O-oj0hjV8RHRyU8HZOKXp6QWsE6afFPb9C0FXbY2urkIVyYumQrk_JBnyDbmFJLijGq9TGrNUWqS0eWrNOxZou4yDmyy9wg097jpBuyQmeBLRC_U-ZDFPOOpySAiNtJR0nkhCBBaydxkX4AuAJ9ossFgPIBAjRr4fuOlkK1lXJPSXW5WuozQv0o4QA6kvg1D0M7iDnysSBGL-G5roJzUjcTNP_MW2nMi7m5-Nt8Sw7CyaA_7z8PXy_JoVmsPEvrilTTdaavkQ-k6sZug29su7Hx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Hierarchical+Gaussian+Descriptor+for+Person+Re-identification&rft.au=Matsukawa%2C+Tetsu&rft.au=Okabe%2C+Takahiro&rft.au=Suzuki%2C+Einoshin&rft.au=Sato%2C+Yoichi&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1363&rft.epage=1372&rft_id=info:doi/10.1109%2FCVPR.2016.152&rft.externalDocID=7780521