Hierarchical Gaussian Descriptor for Person Re-identification
Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a novel descriptor based on a hierarchical distribution of pixel features. A hierarchical covariance descriptor has been successfully applied for...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1363 - 1372 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2016.152 |
Cover
Loading…
Abstract | Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a novel descriptor based on a hierarchical distribution of pixel features. A hierarchical covariance descriptor has been successfully applied for image classification. However, the mean information of pixel features, which is absent in covariance, tends to be major discriminative information of person images. To solve this problem, we describe a local region in an image via hierarchical Gaussian distribution in which both means and covariances are included in their parameters. More specifically, we model the region as a set of multiple Gaussian distributions in which each Gaussian represents the appearance of a local patch. The characteristics of the set of Gaussians are again described by another Gaussian distribution. In both steps, unlike the hierarchical covariance descriptor, the proposed descriptor can model both the mean and the covariance information of pixel features properly. The results of experiments conducted on five databases indicate that the proposed descriptor exhibits remarkably high performance which outperforms the state-of-the-art descriptors for person re-identification. |
---|---|
AbstractList | Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a novel descriptor based on a hierarchical distribution of pixel features. A hierarchical covariance descriptor has been successfully applied for image classification. However, the mean information of pixel features, which is absent in covariance, tends to be major discriminative information of person images. To solve this problem, we describe a local region in an image via hierarchical Gaussian distribution in which both means and covariances are included in their parameters. More specifically, we model the region as a set of multiple Gaussian distributions in which each Gaussian represents the appearance of a local patch. The characteristics of the set of Gaussians are again described by another Gaussian distribution. In both steps, unlike the hierarchical covariance descriptor, the proposed descriptor can model both the mean and the covariance information of pixel features properly. The results of experiments conducted on five databases indicate that the proposed descriptor exhibits remarkably high performance which outperforms the state-of-the-art descriptors for person re-identification. |
Author | Matsukawa, Tetsu Okabe, Takahiro Suzuki, Einoshin Sato, Yoichi |
Author_xml | – sequence: 1 givenname: Tetsu surname: Matsukawa fullname: Matsukawa, Tetsu email: matsukawa@kyushu-u.ac.jp – sequence: 2 givenname: Takahiro surname: Okabe fullname: Okabe, Takahiro email: okabe@ai.kyutech.ac.jp – sequence: 3 givenname: Einoshin surname: Suzuki fullname: Suzuki, Einoshin email: suzuki@kyushu-u.ac.jp – sequence: 4 givenname: Yoichi surname: Sato fullname: Sato, Yoichi email: ysato@iis.u-tokyo.ac.jp |
BookMark | eNotjk1LxDAURaMoOI5dunLTP5Cal7T5WLiQqjPCgMOgboeX9hUjYzokdeG_t6CLy4XD5XAv2VkcIzF2DaICEO62fd_uKilAV9DIE1Y4Y6HWRlnbAJyyBQituHbgLliR86cQApy2YN2C3a0DJUzdR-jwUK7wO-eAsXyg3KVwnMZUDnO2lPIYyx3x0FOcwjCvpzDGK3Y-4CFT8d9L9vb0-Nqu-eZl9dzeb3iQNUzcYtc3svYGUfdikN4YU6NBIhiUtApRze9ANRrRW0Q3Y9LWAhnthfdqyW7-vIGI9scUvjD97I2xopGgfgHSdkq2 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.152 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 1372 |
ExternalDocumentID | 7780521 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-8acd524b7aa6d0f2b7774a7aee1f3283aa36911356aab8aa91f3e6881e76b0bb3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-8acd524b7aa6d0f2b7774a7aee1f3283aa36911356aab8aa91f3e6881e76b0bb3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7780521 |
PublicationCentury | 2000 |
PublicationDate | 2016-06 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.5428257 |
Snippet | Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1363 |
SubjectTerms | Covariance matrices Feature extraction Gaussian distribution Histograms Image color analysis Measurement Robustness |
Title | Hierarchical Gaussian Descriptor for Person Re-identification |
URI | https://ieeexplore.ieee.org/document/7780521 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2nTgN2BBv5cCR7NU2aQ-cJsaENDRNDO02Oa0rTaANbe2FX4-Tdp1AHLglPlRRrNqfHdsfwF3a0zTAIJBp6JP0UzTS6CiVihQ7-36sjUtdTF7UeO4_L4JFDe6rXhgicsVn1LFL95afbOLcpsq6uhjAX4c6B25Fr9YhnxIp9j1Rtfc4slFR9aIwsGwshxmb3eHbdGYLu5QlAPrBrOIcy6gJk_2RinqS906emU789Wta43_PfAztQwufmFbO6QRqtD6FZok5RflH71i0p3XYy1rwMF7ZrmRHkvIhnjDf2UZLwRGqszCbrWCgK6YOqosZyVVSVhw5JbdhPnp8HY5lybIgV-y9MxlinAQD32hElfTSgdGMCFEjUT_1GHwgeootohcoRBMiRiwmFYZ90sr0jPHOoLHerOkcRBinASLFmr_mc2CHScBoLErYRvieZ_ACWvaClp_FII1leTeXf4uv4MgqqKjLuoZGts3phhFAZm6d6r8BHm-uqA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_BogbG13Q6eiDgVCCFguJHXrUuIBgxsF_96X7sxovHgbXuHpWm7932vfe99hNwlbak7wDlLfE8zLwHFlAwSJrRAsHciqezRxWAowqn3MuOzCrkva2G01jb5TDfNo73Lj1dRZo7KWjJvwL9H9hH3uZNXa-1OVAKB6BOU7y7GNiIo7xQ6Ro9l12Wz1X0bjU1qlzASQD-0VSy09GpksB1UnlHy3sxS1Yy-fvVr_O-oj0hjV8RHRyU8HZOKXp6QWsE6afFPb9C0FXbY2urkIVyYumQrk_JBnyDbmFJLijGq9TGrNUWqS0eWrNOxZou4yDmyy9wg097jpBuyQmeBLRC_U-ZDFPOOpySAiNtJR0nkhCBBaydxkX4AuAJ9ossFgPIBAjRr4fuOlkK1lXJPSXW5WuozQv0o4QA6kvg1D0M7iDnysSBGL-G5roJzUjcTNP_MW2nMi7m5-Nt8Sw7CyaA_7z8PXy_JoVmsPEvrilTTdaavkQ-k6sZug29su7Hx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Hierarchical+Gaussian+Descriptor+for+Person+Re-identification&rft.au=Matsukawa%2C+Tetsu&rft.au=Okabe%2C+Takahiro&rft.au=Suzuki%2C+Einoshin&rft.au=Sato%2C+Yoichi&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1363&rft.epage=1372&rft_id=info:doi/10.1109%2FCVPR.2016.152&rft.externalDocID=7780521 |