A fuzzy logic approach to predict human body weight based on AR model
This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of 365 days. AR model predicts body weight of a day from these time-series data. We calculate an order of AR model for each person by Akaike...
Saved in:
Published in | 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011) pp. 1022 - 1025 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2011
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424473151 1424473152 |
ISSN | 1098-7584 |
DOI | 10.1109/FUZZY.2011.6007361 |
Cover
Loading…
Abstract | This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of 365 days. AR model predicts body weight of a day from these time-series data. We calculate an order of AR model for each person by Akaike's Information Criterion. In the experiment, we predicted body weight change of next day for those subjects. The AR model obtained 0.798 in correlation coefficient between predicted and truth values. Second, we propose a Fuzzy-AR model that predicts body weight of next p days from last p days, where p is the order of AR model. In this method, we propose a Fuzzy-AR model with the fuzzy membership function using last p days data. In the experiment, the Fuzzy-AR model obtained 0.558 in correlation coefficient on 2 subjects. |
---|---|
AbstractList | This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of 365 days. AR model predicts body weight of a day from these time-series data. We calculate an order of AR model for each person by Akaike's Information Criterion. In the experiment, we predicted body weight change of next day for those subjects. The AR model obtained 0.798 in correlation coefficient between predicted and truth values. Second, we propose a Fuzzy-AR model that predicts body weight of next p days from last p days, where p is the order of AR model. In this method, we propose a Fuzzy-AR model with the fuzzy membership function using last p days data. In the experiment, the Fuzzy-AR model obtained 0.558 in correlation coefficient on 2 subjects. |
Author | Kuramoto, Kei Nakajima, Hiroshi Kobashi, Syoji Tanii, Hideaki Hata, Yutaka Tsuchiya, Naoki |
Author_xml | – sequence: 1 givenname: Hideaki surname: Tanii fullname: Tanii, Hideaki email: er11u022@steng.u-hyogo.ac.jp organization: Grad. Sch. of Eng., Univ. of Hyogo, Kobe, Japan – sequence: 2 givenname: Hiroshi surname: Nakajima fullname: Nakajima, Hiroshi organization: OMRON Corp., Kyoto, Japan – sequence: 3 givenname: Naoki surname: Tsuchiya fullname: Tsuchiya, Naoki organization: OMRON Corp., Kyoto, Japan – sequence: 4 givenname: Kei surname: Kuramoto fullname: Kuramoto, Kei organization: Grad. Sch. of Eng., Univ. of Hyogo, Kobe, Japan – sequence: 5 givenname: Syoji surname: Kobashi fullname: Kobashi, Syoji organization: Grad. Sch. of Eng., Univ. of Hyogo, Kobe, Japan – sequence: 6 givenname: Yutaka surname: Hata fullname: Hata, Yutaka organization: Grad. Sch. of Eng., Univ. of Hyogo, Kobe, Japan |
BookMark | eNpVkM9Kw0AYxFesYK19Ab3sC6Tul93sZo-htFUoCGIP9lL2z7dtJMmGJEXap7dgL85lmMNvYOaBjJrYICFPwGYATL8sN9vt1yxlADPJmOISbshUqxxEKoTioLLbfzmDERlfwDxRWS7uybTvv9lFUmqu1JgsChqO5_OJVnFfOmratovGHegQaduhL91AD8faNNRGf6I_WO4PA7WmR09jQ4sPWkeP1SO5C6bqcXr1CdksF5_z12T9vnqbF-ukTAUMiQoorWU8MMeZchIuk6zLtMu4z3Iphc_BCm61tSpHbXRQggWuvbSBIwKfkOe_3hIRd21X1qY77a5H8F9lYlA9 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/FUZZY.2011.6007361 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 9781424473175 1424473179 1424473160 9781424473168 |
EndPage | 1025 |
ExternalDocumentID | 6007361 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IM AAJGR ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-7fe6bb03f0c307c61110bc59c53d58664d81b43b9bb78e9a9f740f39d6bf3ee13 |
IEDL.DBID | RIE |
ISBN | 9781424473151 1424473152 |
ISSN | 1098-7584 |
IngestDate | Wed Aug 27 03:38:27 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-7fe6bb03f0c307c61110bc59c53d58664d81b43b9bb78e9a9f740f39d6bf3ee13 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6007361 |
PublicationCentury | 2000 |
PublicationDate | 2011-06 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06 |
PublicationDecade | 2010 |
PublicationTitle | 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011) |
PublicationTitleAbbrev | FUZZY |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000669377 ssj0000941457 |
Score | 1.4983262 |
Snippet | This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1022 |
SubjectTerms | autoregressive model body weight Brain modeling Correlation Data models healthcare system Mathematical model prediction model Predictive models time-series data Weight measurement |
Title | A fuzzy logic approach to predict human body weight based on AR model |
URI | https://ieeexplore.ieee.org/document/6007361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zJ71Mt4m_ycGj3dLmV3Mc4hjCRMTB3GU0aQIitGO0yPbXm6TtpuLBW9NL0zT53tcvee8BcEtUyLGQSRCrhAYkjFEgMRUBQgZTZVN26lnv0yc2mZHHOZ23wN2OC6O19ofP9MBd-r38NFelK5UNvZa6-9c5sNOs4mrt6ikWOi3S8n1bkJB4oc_QS2ZaoG14XRxb0Grknup22BBqkBiOZ4vFW6XuWT_xh_WKR55xB0ybPlcHTj4GZSEHavtLzvG_L3UM-nuOH3zeodcJaOmsCzqNyQOs13wXHH1TLOyBhxE05Xa7gT5kwkaRHBY5XK3dnk8BvesflHm6gZ--7godUqYwz-DoBXrnnT6YjR9e7ydB7cQQvFuELwJuNJMSYYOUjQmK2QCJpKJCUZzSmDGS2uyXYCmk5LEWiTCc2I8tUiYN1jrEp6Cd5Zk-AxBFCRdGCqfDT5giEscRj4w0OpJxiNk56LkxWq4qsY1lPTwXf9--BIdVkdeVRa5Au1iX-tpmCYW88dPjC1w9skI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHtQLChi_7cGjg2792HokBoIKxBhIkAtZuzYxJhshWwz8ertuw4948LbusrXd3uft2z7PA8Atka6PuQidQIbUIW6AHIEpdxDSmEqTslPLeh9P2HBGHud0XgN3Oy6MUsoePlOd_NLu5UeJzPJSWddqqedrnT2D-4QWbK1dRcWAp8Fa_6vNiUus1KdrRTMN1FbMLh8b2KoEn8q2W1FqEO8OZovFa6HvWT7zh_mKxZ5BA4yrty6OnLx3slR05PaXoON_u3UE2l8sP_i8w69jUFNxEzQqmwdY_vVNcPhNs7AF-j2os-12A23QhJUmOUwTuFrnuz4ptL5_UCTRBn7YyivMsTKCSQx7L9B677TBbNCf3g-d0ovBeTMYnzq-VkwIhDWSJipIZkIkEpJySXFEA8ZIZPJfggUXwg8UD7n2iZluHjGhsVIuPgH1OInVKYDIC32uBc-V-AmTRODA8z0ttPJE4GJ2Blr5GC1XhdzGshye879v34D94XQ8Wo4eJk8X4KAo-eZFkktQT9eZujI5Qyqu7afyCeoCtY8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+Fuzzy+Systems+%28FUZZ-IEEE+2011%29&rft.atitle=A+fuzzy+logic+approach+to+predict+human+body+weight+based+on+AR+model&rft.au=Tanii%2C+Hideaki&rft.au=Nakajima%2C+Hiroshi&rft.au=Tsuchiya%2C+Naoki&rft.au=Kuramoto%2C+Kei&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781424473151&rft.issn=1098-7584&rft.spage=1022&rft.epage=1025&rft_id=info:doi/10.1109%2FFUZZY.2011.6007361&rft.externalDocID=6007361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-7584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-7584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-7584&client=summon |