A fuzzy logic approach to predict human body weight based on AR model

This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of 365 days. AR model predicts body weight of a day from these time-series data. We calculate an order of AR model for each person by Akaike...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011) pp. 1022 - 1025
Main Authors Tanii, Hideaki, Nakajima, Hiroshi, Tsuchiya, Naoki, Kuramoto, Kei, Kobashi, Syoji, Hata, Yutaka
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2011
Subjects
Online AccessGet full text
ISBN9781424473151
1424473152
ISSN1098-7584
DOI10.1109/FUZZY.2011.6007361

Cover

Loading…
Abstract This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of 365 days. AR model predicts body weight of a day from these time-series data. We calculate an order of AR model for each person by Akaike's Information Criterion. In the experiment, we predicted body weight change of next day for those subjects. The AR model obtained 0.798 in correlation coefficient between predicted and truth values. Second, we propose a Fuzzy-AR model that predicts body weight of next p days from last p days, where p is the order of AR model. In this method, we propose a Fuzzy-AR model with the fuzzy membership function using last p days data. In the experiment, the Fuzzy-AR model obtained 0.558 in correlation coefficient on 2 subjects.
AbstractList This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of 365 days. AR model predicts body weight of a day from these time-series data. We calculate an order of AR model for each person by Akaike's Information Criterion. In the experiment, we predicted body weight change of next day for those subjects. The AR model obtained 0.798 in correlation coefficient between predicted and truth values. Second, we propose a Fuzzy-AR model that predicts body weight of next p days from last p days, where p is the order of AR model. In this method, we propose a Fuzzy-AR model with the fuzzy membership function using last p days data. In the experiment, the Fuzzy-AR model obtained 0.558 in correlation coefficient on 2 subjects.
Author Kuramoto, Kei
Nakajima, Hiroshi
Kobashi, Syoji
Tanii, Hideaki
Hata, Yutaka
Tsuchiya, Naoki
Author_xml – sequence: 1
  givenname: Hideaki
  surname: Tanii
  fullname: Tanii, Hideaki
  email: er11u022@steng.u-hyogo.ac.jp
  organization: Grad. Sch. of Eng., Univ. of Hyogo, Kobe, Japan
– sequence: 2
  givenname: Hiroshi
  surname: Nakajima
  fullname: Nakajima, Hiroshi
  organization: OMRON Corp., Kyoto, Japan
– sequence: 3
  givenname: Naoki
  surname: Tsuchiya
  fullname: Tsuchiya, Naoki
  organization: OMRON Corp., Kyoto, Japan
– sequence: 4
  givenname: Kei
  surname: Kuramoto
  fullname: Kuramoto, Kei
  organization: Grad. Sch. of Eng., Univ. of Hyogo, Kobe, Japan
– sequence: 5
  givenname: Syoji
  surname: Kobashi
  fullname: Kobashi, Syoji
  organization: Grad. Sch. of Eng., Univ. of Hyogo, Kobe, Japan
– sequence: 6
  givenname: Yutaka
  surname: Hata
  fullname: Hata, Yutaka
  organization: Grad. Sch. of Eng., Univ. of Hyogo, Kobe, Japan
BookMark eNpVkM9Kw0AYxFesYK19Ab3sC6Tul93sZo-htFUoCGIP9lL2z7dtJMmGJEXap7dgL85lmMNvYOaBjJrYICFPwGYATL8sN9vt1yxlADPJmOISbshUqxxEKoTioLLbfzmDERlfwDxRWS7uybTvv9lFUmqu1JgsChqO5_OJVnFfOmratovGHegQaduhL91AD8faNNRGf6I_WO4PA7WmR09jQ4sPWkeP1SO5C6bqcXr1CdksF5_z12T9vnqbF-ukTAUMiQoorWU8MMeZchIuk6zLtMu4z3Iphc_BCm61tSpHbXRQggWuvbSBIwKfkOe_3hIRd21X1qY77a5H8F9lYlA9
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FUZZY.2011.6007361
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9781424473175
1424473179
1424473160
9781424473168
EndPage 1025
ExternalDocumentID 6007361
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IM
AAJGR
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-7fe6bb03f0c307c61110bc59c53d58664d81b43b9bb78e9a9f740f39d6bf3ee13
IEDL.DBID RIE
ISBN 9781424473151
1424473152
ISSN 1098-7584
IngestDate Wed Aug 27 03:38:27 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-7fe6bb03f0c307c61110bc59c53d58664d81b43b9bb78e9a9f740f39d6bf3ee13
PageCount 4
ParticipantIDs ieee_primary_6007361
PublicationCentury 2000
PublicationDate 2011-06
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06
PublicationDecade 2010
PublicationTitle 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)
PublicationTitleAbbrev FUZZY
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669377
ssj0000941457
Score 1.4983262
Snippet This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of...
SourceID ieee
SourceType Publisher
StartPage 1022
SubjectTerms autoregressive model
body weight
Brain modeling
Correlation
Data models
healthcare system
Mathematical model
prediction model
Predictive models
time-series data
Weight measurement
Title A fuzzy logic approach to predict human body weight based on AR model
URI https://ieeexplore.ieee.org/document/6007361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zJ71Mt4m_ycGj3dLmV3Mc4hjCRMTB3GU0aQIitGO0yPbXm6TtpuLBW9NL0zT53tcvee8BcEtUyLGQSRCrhAYkjFEgMRUBQgZTZVN26lnv0yc2mZHHOZ23wN2OC6O19ofP9MBd-r38NFelK5UNvZa6-9c5sNOs4mrt6ikWOi3S8n1bkJB4oc_QS2ZaoG14XRxb0Grknup22BBqkBiOZ4vFW6XuWT_xh_WKR55xB0ybPlcHTj4GZSEHavtLzvG_L3UM-nuOH3zeodcJaOmsCzqNyQOs13wXHH1TLOyBhxE05Xa7gT5kwkaRHBY5XK3dnk8BvesflHm6gZ--7godUqYwz-DoBXrnnT6YjR9e7ydB7cQQvFuELwJuNJMSYYOUjQmK2QCJpKJCUZzSmDGS2uyXYCmk5LEWiTCc2I8tUiYN1jrEp6Cd5Zk-AxBFCRdGCqfDT5giEscRj4w0OpJxiNk56LkxWq4qsY1lPTwXf9--BIdVkdeVRa5Au1iX-tpmCYW88dPjC1w9skI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHtQLChi_7cGjg2792HokBoIKxBhIkAtZuzYxJhshWwz8ertuw4948LbusrXd3uft2z7PA8Atka6PuQidQIbUIW6AHIEpdxDSmEqTslPLeh9P2HBGHud0XgN3Oy6MUsoePlOd_NLu5UeJzPJSWddqqedrnT2D-4QWbK1dRcWAp8Fa_6vNiUus1KdrRTMN1FbMLh8b2KoEn8q2W1FqEO8OZovFa6HvWT7zh_mKxZ5BA4yrty6OnLx3slR05PaXoON_u3UE2l8sP_i8w69jUFNxEzQqmwdY_vVNcPhNs7AF-j2os-12A23QhJUmOUwTuFrnuz4ptL5_UCTRBn7YyivMsTKCSQx7L9B677TBbNCf3g-d0ovBeTMYnzq-VkwIhDWSJipIZkIkEpJySXFEA8ZIZPJfggUXwg8UD7n2iZluHjGhsVIuPgH1OInVKYDIC32uBc-V-AmTRODA8z0ttPJE4GJ2Blr5GC1XhdzGshye879v34D94XQ8Wo4eJk8X4KAo-eZFkktQT9eZujI5Qyqu7afyCeoCtY8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+Fuzzy+Systems+%28FUZZ-IEEE+2011%29&rft.atitle=A+fuzzy+logic+approach+to+predict+human+body+weight+based+on+AR+model&rft.au=Tanii%2C+Hideaki&rft.au=Nakajima%2C+Hiroshi&rft.au=Tsuchiya%2C+Naoki&rft.au=Kuramoto%2C+Kei&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781424473151&rft.issn=1098-7584&rft.spage=1022&rft.epage=1025&rft_id=info:doi/10.1109%2FFUZZY.2011.6007361&rft.externalDocID=6007361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-7584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-7584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-7584&client=summon